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Instanton calculus in shell models of turbulence
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It has been shown recently that the intermittency of the Gledzer-Ohkitani-Yamada~GOY! shell model of
turbulence has to be related to singular structures whose dynamics in the inertial range includes interactions
with a background of fluctuations. In this paper we propose a statistical theory of these objects by modeling the
incoherent background as a Gaussian white-noise forcing of small strengthG. A general scheme is developed
for constructing instantons in spatially discrete dynamical systems and the Crame´r function governing the
probability distribution of effective singularities of exponentz is computed up to first order in a semiclassical
expansion in powers ofG. The resulting predictions are compared with the statistics of coherent structures
deduced from full simulations of the GOY model at very high Reynolds numbers.

PACS number~s!: 47.27.Ak, 03.65.Sq
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I. INTRODUCTION

Are structures~sheets or filaments of vorticity! a vital
ingredient of intermittency in three-dimensional~3D! incom-
pressible turbulence? To date, this important question
mains open@1#, and an answer starting from first principl
i.e., from a controlled approximation to the Navier-Stok
equations, seems over the horizon. The new understandin
the anomalous scaling in the Kraichnan’s model of pass
advection@2#, based on the identification of zero modes
the homogeneous Hopf equations for equal-time correlat
has in particular strengthened the belief that field-theoret
methods would eventually be able to capture the full sta
tics of turbulent flows without an explicit account of stru
tures.

Interestingly enough, the relative interplay between
herent ordered structures and incoherent turbulent fluc
tions turns out to be a subtle matter already in the restric
framework of the so-called shell models of turbulence@3#. It
was noticed very soon@4# that elementary bricks of intermit
tency in those deterministic one-dimensional~1D! cascade
models could be pulses or bursts of activity growing in
almost self-similar way as they move from large to sm
scales. However, genuine dynamically stable self-similar
lutions of the equations of motion in the inertial range d
play a unique scaling exponent~to be denoted below asz0),
provided they are localized ink space~which, in the shell
model approach, reduces to a discrete set of wave num
kn52(n21), where the shell indexn goes from 1 tò ). Fur-
thermore, the exponentz0, giving the logarithmic slope of
the velocity gradient spectrum left in the trail of the puls
happens to be rather close to the Kolmogorov value 2/3z0
50.72) in the case of the Gledzer-Okhitani-Yamada~GOY!
model, in the range of parameters where it reproduces at
the multiscaling properties of real turbulent flows.

In Ref. @5# the role played by the interaction of pulse
with the rest of the flow in producing more singular even
was unraveled, and a two-fluid picture was introduc
where coherent structures form in and propagate into a
tureless random background. Our goal in this paper is
PRE 621063-651X/2000/62~3!/3592~19!/$15.00
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elevate this still rather qualitative proposal to the rank o
semiquantitative theory and to test its predictive power ab
intermittency in the GOY model. We shall assume that t
bulent fluctuations on the shells downstream of the pu
i.e., small scales, act on the coherent part of the flow a
random, white-in-time, Gaussian forcing and we ask whet
the inviscid stochastic extension of the GOY model obtain
in this way is able to reproduce the statistics of strong dev
tions of the full turbulent system in the inertial range. The
is a priori quite a lot of freedom in the parametrization of th
forcing. Therefore, in order to keep things as simple as p
sible, we bind ourselves to use a single adjustable param
~hereafter notedG), which measures the level of noise. W
consider the semiclassical limitG!1 of these systems an
study the statistics of singular structures appearing in
regime@6#.

Semiclassical~or instanton! techniques are well suited t
capture large and rare excursions of fluctuating fields@7#. As
such, they have gained recently a renewal of interest in
field of turbulence@8# and have already led to noteworth
results in the context of Burger’s turbulence@9,10#, and of
the Kraichnan’s model of passive scalar advection@11,12#.
One usually starts from a path-integral representation
high-order structure functions and uses a saddle-point
proximation to determine the coupled field-force configu
tions contributing mostly to those quantities. The nature
the statistical object to be computed imposes precise bou
ary conditions on the physical field and the random fo
~respectively at large and small scales, where the casc
processes start and end!. Instantons, which in the inertia
range often reduce to a self-similar collapse along some
tial dimensions, are eventually selected by a delicate ma
ing procedure at the two boundaries. In shell models we
dealing with an intrinsically discrete lattice of logarithm
scales. As a consequence, the analytic computation of ins
tons is completely out of reach in the inertial range, not
mention the matching on both sides of the cascade. To
cumvent this difficulty, we shall focus on the probabili
distribution function~pdf! of scaling exponents aftern cas-
cade steps,Pn(z), and argue that, in the semiclassical lim
3592 ©2000 The American Physical Society
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PRE 62 3593INSTANTON CALCULUS IN SHELL MODELS OF TURBULENCE
G!1, this pdf builds up from the neighborhood of a sing
self-similar instanton~of scaling exponentz) that dynamic
stability considerations will help us to construct nume
ically. In order to get nontrivial physics, it turns out to b
necessary to perform the semiclassical expansion
2 limn→`(1/n)ln Pn(z) ~the rate of rarefaction of singularitie
of the scaling exponentz in the multifractal picture! up to
next to leading order in powers ofG. This can be achieved
via a summation over quadratic fluctuations around the
stantons, once the proper set of boundary conditions for
corresponding trajectories in configuration space has b
defined. We shall show in detail how to carry out this pr
gram and end up with a prediction forPn(z) lending itself to
a straight confrontation with the pdf of effective scaling e
ponents of coherents events that can be extracted from s
lations of the GOY model at very high Reynolds numbe
Although our interest lies primarily in gaining a better u
derstanding of intermittency in the framework of shell mo
els of turbulence, the emphasis will be put in this paper
the technical aspects of the method that we had to dev
for computing instantons. We believe that this method
general enough to find applications in other contexts
physical problems, like for instance the motion of compl
objects or excitations on one-dimensional~1D! lattices in the
presence of a comoving random environment.

The paper is organized as follows. In Sec. II we define
stochastic extensions of the GOY model that we shall stu
In Sec. III the equations of motion for instantons will b
derived using the well-known Martin-Siggia-Rose pa
integral representation of probability distribution functio
for stochastic dynamical systems. Section IV is devoted
the computation of self-similar extremal trajectories, with t
theoretical considerations underlying the solution explain
in Sec. IV A and its practical implementing, together wi
the results, exposed in Sec. IV B. The important effect
quadratic fluctuations and the rather heavy formal work
hind their computation are discussed in Sec. V. The comp
son of the results issuing from the instanton approach w
numerical data on the statistics of coherent structures in
genuine GOY model is given in Sec. VI. We conclude
Sec. VII, in particular as to the relevance of a two-fluid d
scription of intermittency in shell models of turbulence.

II. DEFINITION OF THE STOCHASTIC DYNAMICAL
SYSTEM

Equations of motion for the GOY model in the inerti
range read

dbn

dt
5Q2~12e!bn22* bn21* 1ebn21* bn11* 2Q22bn11* bn12* ,

~2.1!

where the complex variablebn5knun should be understood
as the Fourier component of the gradient velocity field
wave numberkn5Qn and the integern runs from 0 to1`.
Throughout this paper, usual values of parameterse50.5
andQ52 will be assumed. It is convenient to cast Eq.~2.1!
in a vectorial form
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db

dt
5N@b#, ~2.2!

where the infinite-dimensional vectorb is built up from the
bn’s, while thenth component of the nonlinear kernelN@b#
is given by the right-hand side of Eq.~2.1!. It is worth noting
at this point thatb* •b5(n50

` ubnu2 plays dimensionally the
role of enstrophy in real flow and that the inverse square r
of this quantity sets the order of magnitude of the small
time scale on the shell lattice.

Since quadratic nonlinearities lead generically to fin
time singularities, it is very useful to introduce a desingul
izing time variablet related to the physical timet by the
differential law

dt

dt
5~b* •b!1/2. ~2.3!

This turns Eq.~2.2! into

db

dt
5

N@b#

~b* •b!1/2
, ~2.4!

where both sides of the equation have the same scaling
mension in the fieldb, which shows that an infinite ‘‘time’’
is now required to form a singularity by traveling across t
whole shell axis.

From previous work@13#, we know that every initial con-
dition of finite enstrophy, when evolving under dynami
~2.4!, eventually organizes itself in a solitonlike pulse, mo
ing from large to small scales at a constant speed with
exponential growth of its amplitude. The asymptotic state
unique, up to trivial phase symmetries of the GOY mod
@14#, time translations, or multiplicative rescaling of the fie
b, which all leave the equation of motion~2.4! invariant. We
may restrict our attention without loss of generality to t
case where the phase pattern along the shell axis does
break into a three-sublattice structure. The asymptotic F
quet state, to be noted henceforthb0(t), is then purely real
and such that

bn11
0 ~t1T0!5exp~A0T0!bn

0~t!. ~2.5!

The periodT0 is the ‘‘time’’ needed for the center of the
pulse to go from shelln to shell n11, while the~positive!
Lyapunov exponentA0 controls its growth. Both quantities
T0 and A0, are dynamically selected in a unique way. T
scaling exponentz0 associated with the pulse~fixing in par-
ticular the logarithmic slope of the spectrum left in its tra!
can be extracted from the identityQz05exp(A0T0). Its value
turns out to be 0.72 in the case of the GOY model for t
choice of parameters stated before.

We turn now to the stochastic models that we are int
ested in solving by the instanton method. Their physical m
tivation has been explained in Ref.@5#: we assume tha
pulses parametrize adequately singular~and temporally co-
herent! structures in shell models but that the determinis
dynamics~2.2! should be enlarged towards a stochastic o
in order to describe the interaction of a given pulse w
incoherent fluctuations produced by the relaxation of
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3594 PRE 62DAUMONT, DOMBRE, AND GILSON
trails left by its predecessors. We are therefore led to c
sider the following extension of the original inviscid GO
model:

db

dt
5N@b#1AG~b* •b!3/4B@C#h, ~2.6!

whereh is a Gaussian noise,d-correlated in time and she
index, whose correlations read

^hn* ~ t !hn8~ t8!&5dnn8d~ t2t8!. ~2.7!

The various factors coming in front ofh in Eq. ~2.6! have
the following meaning: the numberG fixes the relative
strength of incoherent fluctuations with respect to coher
ones and we shall be interested in the semiclassical lim
small G amenable to semianalytic treatment. As will b
clearer in a while, the overall scale factor (b* •b)3/4 is there
to keep noise relevant all along the cascade, thereby pres
ing scale invariance. Finally the matrixB@C#, of zero scaling
dimension in the fieldb since it depends only on the un
vectorC5b/A(b* •b), may be used either to introduce sp
tial correlations of noise~along the shell axis! or to localize
its action with respect to the instantaneous position of
pulse. Although the formalism to be developed in this pa
can deal with the most general situation, we restricted o
selves in practical investigations to diagonal matricesB@C#,
just playing with the degree of localization of noise. Resu
will be presented for three rather emblematic choices ofB:
~i! Bnn51, which describes a completely delocalized noi
~ii ! Bnn5Cn22* Cn21* , which keeps some flavor of the orig
nal GOY dynamics and makes noise active just at the lead
edge of the pulse; and finally~iii ! Bnn5uCn25u21uCn24u2,
which removes the action of noise further away from t
center of the pulse. We must emphasize that these partic
choices were not dictated by rigorous considerations on
underlying dynamics of the GOY model, but rather used
scan the variety of behaviors which may be expected fr
such stochastic dynamical systems. It should be noted
the structure of the matrixB is not constrained by any con
servation law, since the coherent part of the flow does
form a closed system anymore, even in the inertial range
our two-fluid description. Finally, to simplify the following
analysis, we are going to restrict the fieldsb and h in Eqs.
~2.6! and~2.7! to being real-valued vectors and to neglect t
effect of imaginary fluctuations. This is certainly not a se
ous restriction as for the instantons themselves, which
expected to be, like the self-similar deterministic soluti
described above, purely real, up to trivial phase symmet
of the GOY model. It can also be remarked that the mo
~ii ! ~which will be found later on to give the more convincin
results! does not require a complex noise, since the ph
degrees of freedom have already been incorporated in
definition of the matrixB in that case.

While the deterministic dynamics~2.2! selects a single
self-similar solution exploding in finite time with scaling ex
ponentz0, the presence of noise in Eq.~2.6! allows for a
continuum of scaling exponents, even in the manifold of n
malizable fieldsb. In the small noise~or semiclassical! limit
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G!1, the probability density of developing an effectiv
growth exponentz after n@1 cascade steps will take th
form

Pn~z!;An expF2nS s0~z!

G
1s1~z! D G , ~2.8!

wheres0(z) is the action per unit cascade step of the se
similar extremalsolution of scaling exponentz of optimal
bare Gaussian weight~or instanton!, ands1(z) measures, to
the lowest order inG, how the basin of attraction of the
instanton in phase space evolves with the number of cas
steps. Note that the argument of the exponential in Eq.~2.8!,
2$@s0(z)/G#1s1(z)%, is nothing but the Crame´r function
introduced in the theory of large deviations, which gover
the rate of rarefaction of singularities in the multifractal pi
ture @15#. We will show in this paper how to compute in
clean way both quantitiess0(z) ands1(z). Before doing this,
we must carefully handle problems related to the time d
cretization of the stochastic equation~2.6! since a consisten
treatment of them is necessary to get the right expressio
the first corrections1(z). We shall adopt the view that th
initial stochastic equation~2.6! is to be understood in the
Stratonovich sense@16#. However, in the path-integral for
mulation of stochastic dynamical systems that we sh
heavily use in the following, it is much simpler to work wit
the Ito prescription which, in the limit of small time step
amounts integrating Eq.~2.6! within a basic Euler scheme
with all b-dependent quantities in the right-hand side~rhs!
estimated at the prepoint. When switching to the Ito discr
zation recipe, the stochastic equation has to be changed

db

dt
5NG@b#1AG~b•b!3/4B@C#h , ~2.9!

where the new kernelNG@b# differs from N@b# by the addi-
tion of the so-called Ito drift term. We give, for the sake
completeness, the resulting expression of thenth component
of NG ,

NG n@b#5Nn@b#1
1

2
G

]

]bk
@~b•b!3/4Bn j#~b•b!3/4Bk j . ~2.10!

At this point, we may write down the discrete analog
Eq. ~2.3! as Dt i5t i 112t i5(bi•bi)

1/2(t i 112t i) ~where i
is the time index! and redefine the noise ashi→ji

5AG(bi•bi)
21/4hi . This leads to the following stochasti

extension of Eq.~2.4! which will be the starting point of our
formal analysis,

db

dt
5

NG@b#

~b•b!1/2
1~b•b!1/2B@C#j, ~2.11!

with

^jn~t!jn8~t8!&5Gdnn8d~t2t8!. ~2.12!
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III. EXTREMAL TRAJECTORIES FROM
PATH-INTEGRAL FORMULATION

Statistics of classical fields in the presence of rand
forces can be examined with the help of field theoreti
techniques formulated in@17#. In particular, the probability
to go from pointbin at timet50 to pointbf at timet f may
be written as a path integral

P~bin,0;bf ,t f !5E DbDp exp2S@b,p#, ~3.1!

whereS@b,p# is an effective action to be defined below,p an
auxiliary field conjugated to the physical oneb and DbDp
stands for

dp0

~2p!d )
i 51

i 5N21
dbidpi

~2p!d
. ~3.2!

In the last equation, the time intervalt f was divided intoN
subintervals of lengthDt5t f /N ~with bin5b0 and bf
5bN) and the number of shells was set to a finite valued, in
order to give a clear meaning to the measure. For the p
lem of interest~2.11!, the effective actionS takes the form

S@b,p#5 (
i 50

i 5N21

ipi•S bi 112bi2Dt
NG@bi #

~bi•bi !
1/2D

1
G

2
~bi•bi !pi•B@bi #

tB@bi #pi , ~3.3!

or, in the continuum limit

S@b,p#5E
0

t f
dt ip.S db

dt
2

NG@b#

~b•b!1/2D
1

G

2
~b•b!p•B@b# tB@b#p. ~3.4!

The last term in Eq.~3.4!, quadratic inp, appears as a resu
of averaging over the Gaussian noisej, while the first one,
linear in p, would still be there in the absence of noise a
formal way of enforcing the deterministic equation of moti
of b. S@b,p# will be referred to in the following as the
Martin-Siggia-Rose~MSR! action.

Rescaling the auxiliary fieldp as p8/G puts an overall
large factor 1/G in front of the effective action and opens th
way to a saddle-point approximation to the path integ
~3.1!. Extremization of the action with respect to the config
rations of both fieldsb and p between times 0 andt f , for
fixed endpoints, leads in a straightforward way to the follo
ing set of coupled equations defining extremal trajectorie

db

dt
5

NG@b#

~b•b!1/2
1~b•b!BtBu, ~3.5!

du

dt
52 tMu2

1

2
]b@~b•b!u•BtBu#. ~3.6!

In the above equation, we setp852 i u andM is the Jaco-
bian matrix of the kernelNG@b#/(b•b)1/2:
l

b-

a

l
-

-

M5
]bNG@b#

~b•b!1/2
2

NG@b# ^ b

~b•b!3/2
.

As usual, Eqs.~3.5! and~3.6! inherit a canonical structure

db

dt
5

]H
]u

, ~3.7!

du

dt
52

]H
]b

, ~3.8!

where the HamiltonianH reads

H5
u•NG@b#

~b•b!1/2
1

1

2
~b•b!~u•BtBu!. ~3.9!

SinceH is not explicitly time dependent, we conclude th
its value, to be called the pseudoenergy in the seque
conserved along any extremal trajectory. The actionS@b,u#
may be rewritten in terms ofH as

S@b,u#5E
0

t f
dtS u•

db

dt
2HD , ~3.10!

from which it is seen that the further requirement that t
trajectory be extremal with respect to time reparametrizat
leads to the condition of vanishing pseudoenergyH50. Not-
ing that each term ofH in Eq. ~3.9! has the same scalin
dimension inb andu ~either 1 or 2!, one finds that

d

dt
~b•u!5u•

]H
]u

2b•
]H
]b

50, ~3.11!

which shows that the overlapb•u between the physical an
auxiliary fields is also conserved, together withH, along an
extremal trajectory. This property reflects the scaling inva
ance of the stochastic cascade processes we have in m
We should at this point insist on the fact that, in contrast
instantons in the framework of equilibrium statistical m
chanics or quantum mechanics, equations for extremal
jectories in stochastic dynamical systems describe the
motion of the physical field in a particular ‘‘optimal’’ real
ization of the noise. The comparison of Eqs.~2.11! and~3.5!
shows indeed that the following relation holds betweenj
andu:

j5~b•b!1/2 tBu. ~3.12!

Like their deterministic parent~2.4!, the equations of mo-
tion ~3.5! and ~3.6! sustain formally traveling-wave-like so
lutions, such that

bn11~t1T!5expATbn~t!, ~3.13!

un11~t1T!5exp2ATun~t!, ~3.14!

whose scaling exponentz5AT/ ln Q is expected to be now
related to the overlapm15b•u ~with z5z0 for m150, in the
absence of noise!. However, there is little hope of finding
these solutions by a direct forward in time integration of E
~3.5! and ~3.6!, as could be done successfully for Eq~2.4!.
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This is because the auxiliary fieldu intrinsically propagates
‘‘backward’’ in time, as is clear from the discretized versio
of Eq. ~3.6! @deduced from the extremization of Eq.~3.3!#. In
the present problem, we have observed numerically
regular Floquet states emerge as dynamical attractors of
~3.5! and ~3.6! only for rather high values ofm1 ~otherwise
the system evolves in a chaotic manner!. They form a branch
of solutions definitely distinct from the one to be obtained
the next section and correspond presumably to local max
of the action rather than the local minima of interest to u

IV. AN ITERATIVE METHOD FOR COMPUTING
SELF-SIMILAR INSTANTONS

A. Theory

The previous considerations suggest that Eqs.~3.5! and
~3.6! should not be treated on the same footing. The car
examination of physical properties that instantons sho
possess will give us keys for computing them. Assume fo
while that a solution has been found, obeying Eqs.~3.13! and
~3.14!. We note the corresponding configurations ofb andj
as b0 and j0. The linearization of the equation of motio
~3.5! at fixed noise leads to the following evolution of flu
tuationsdb of b aroundb0:

d

dt
db5LdbÄMdb1~db•]b!@~b•b!1/2Bj0#ub0. ~4.1!

The periodicity properties of the linear operatorL ensure that
the fluctuations ofb may be decomposed on a complete
of eigendirectionsCir (t) evolving according to Eq.~4.1!
and such that

Cir ~t1T!5es iT T11Cir ~t!, ~4.2!

whereT11 denotes translation by one unit in the right dire
tion along the shell lattice. In practice we shall have to wo
with a finite number of shellsd and, in order to get rid of
boundary effects, it will be necessary to fully periodize t
shell lattice: the indexi then runs between 1 andd and the
translation operator is easy to represent as a matrix.
mally, theCir ’s can be determined at timet50 by diago-
nalizing the Floquet operator:

UT5T21 expQE
0

T

Ldt, ~4.3!

where expQ is a chronologically time-ordered product~initial
time on the right!. One observes thatb0 satisfies Eq.~4.2!
with a time-averaged Lyapunov exponents5A.

We claim now that every initial conditionb(0) evolving
in the configuration of noisej0 should be attracted toward
the instantonic trajectory. If it were not true, some pertur
tions would be able to grow in the comoving frame of t
pulse, thereby generating scaling exponents larger thanz at
no cost in the action, in contradiction with the hypothe
that the optimal realization of a singularity of exponentz has
been found. This strong criterion of dynamic stability is a
other way of stating that the Crame´r function should be in-
sensitive to the details of the production of pulses in
forcing range. It implies thatA is an upper bound for the rea
at
qs.
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part of thes i ’s. Arranging the eigendirectionsCir in order
of decreasing Res i , we are therefore led to identifyb0(t)
with C1 r(t). In the case of zero noise where we recover
deterministic solution of Sec. II@with j050 in both Eqs.
~3.5! and~4.1!#, the time derivativedb0/dt is also the solu-
tion of Eq. ~4.1! with the same Lyapunov exponent asb0,
s5A (5A0 in this case!. In this limit we would naturally
defineC2r(t) as db0/dt. This property is lost in the more
general situation of a nonvanishing noise, becausej0 is not
time invariant. What remains true, however, is the fact t
b0 anddb0/dt still span the set of ‘‘coherent’’ fluctuation
which do not affect the shape of the pulse but modify
height and position.

By turning now our attention to the linear dynamics du
to Eq. ~4.1! we shall come close to Eq.~3.6!. Let us indeed
consider the equation of motion

du

dt
52 tLu, ~4.4!

where in order to limit the proliferation of symbols, we kee
the same notationu for the new auxiliary field, although it is
only in particular circumstances, to be clarified below,
lated to theu of Eqs.~3.5! and~3.6!. From Eq.~4.1! we get

du

dt
52 tMu2]b@~b•b!1/2u•Bj0#ub0. ~4.5!

The dual dynamics enables one to construct a basis of
eigenvectorsCi l (t) ~with 1< i<d) satisfying

Ci l ~t1T!5e2s iTT11Ci l ~t!, ~4.6!

as well as the following orthogonality conditions with th
members of the first basis,

Ci l ~t!•Cj r ~t!5d i j , ~4.7!

at every time. The vectorsCi l (0) are determined by diago
nalizing the adjoint Floquet operator

tUT5expWE
0

T
tLdtT11 , ~4.8!

and enforcing the normalization condition~4.6! at time t

50(expW) is now an antichronologically time-ordered pro
uct. We may note at this point that the first left eigenvec
C1l is, in the generic case of nonzero noise, the only one
display the scaling behavior anticipated foru0 according to
Eq. ~3.14!, since its Lyapunov exponent equals2s152A.
We conclude that the auxiliary equation~3.6! in the re-
stricted manifold of self-similar solutions is tantamount
the relation

u0~t!5m1C1l~t!, ~4.9!

where the multiplicative constantm1 is nothing but the over-
lap u0

•b0@5m1C1l(t)•C1r(t)5m1#, which was shown be-
fore to be indeed a conserved quantity. This claim is furt
confirmed by rewriting the original equation~3.6! as
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du

dt
52 tMu2~u•B tBu!b2~b•b!u•

1

2
@~]bB! tB

1B~]b
tB!#u

52 tMu2~u•B tBu!b2~b•b!u•~]bB! tBu.

Putting back 0 superscripts and reintroducingj0 by using Eq.
~3.12!, we arrive at

du0

dt
52 tMu02~u0

•Bj0!
b0

~b0
•b0!1/2

2~b0
•b0!1/2]b~u0

•Bj0!, ~4.10!

which shows thatu0 obeys the dual dynamics defined by E
~4.4!.

Having interpreted Eq.~3.6! as a condition of self-
consistency for the conjugate momentumu expressed by Eq
~4.9!, we could contemplate the following Newton-like pro
cedure for catching numerically self-similar instantons. F
make a guess forj in the form of a traveling wave@jin(t
1T)5T11jin(t)#, integrate Eq.~3.6! forward in time in or-
der to determine the asymptotic traveling state reached bb
in the prescribed configuration of the noise. Then comp
C1l from the diagonalization oftUT @or from running Eq.
~4.4! backward in time in order to let emerge the eigendir
tion of lowest growth rate#, employ Eq.~4.9! for producing a
new configuration ofu ~and therebyj), and iterate this loop
many times at a fixed value of the overlapm1 until conver-
gence is achieved. However, two major difficulties call f
an improvement of the method: they both have to do with
stability of the trajectory upon time reparametrization. Fi
we do not know the speed~or the inverse periodT21) of the
final traveling wave that must carry togetherb andj. There-
fore, when performing the first step of the iterative loop,
must allow continuous time reparametrization of our Ans
for the noise in order to fine tune the speeds of the two pu
formed byb andj and let both terms on the right hand-sid
of Eq. ~3.5! always be relevant. It will be explained in Se
IV B how this goal can be achieved in practice. The seco
difficulty is much more serious than the preceding one an
the way of getting around it resides perhaps the most tri
part of this work. The point is that traveling-wave solutio
to Eqs.~3.5! and ~3.6! may perfectly have a nonzero pse
doenergyH, while we are looking for the particular one
with H50. We shall be able to fulfill asymptotically the tw
conditionsb•u5m1 and H50, if and only if our iterative
guess foru is constructed within a two-dimensional spa
rather than a unidimensional one as in the naive prop
made above. For this purpose, we are going to embed
linearized dynamics~4.1! into a new one which admits th
time translation modedb0/dt as a true eigenstate of th
same growth factorA asb0, restoring thereby the symmetrie
present in the absence of noise. We shall do that in the m
economical way, from both formal and numerical points
view, by substitutingF2r5db0/dt to C2r , i.e., the eigendi-
rection along which the fluctuations ofb aroundb0 are the
less stable.

The left eigenvectorC2l is first rescaled asF2l
5C2l /C2l•F2r ~which makes sense as long asC2l .F2r
.

t

te

-

e
t

z
es

d
in
y

al
he

st
f

Þ0, a condition always found to be satisfied in practice!, so
thatF2l has a unit overlap withF2r , while being orthogonal
to all other right eigenvectorsCir with iÞ2 ~which will be
noted Fir from now on!. One then considers the modifie
linear dynamics:

ddb

dt
5L̃db5Ldb1~b0

•b0!1/2~F2l•db!B
dj0

dt
. ~4.11!

It is easily checked thatF2r5db0/dt obeys Eq.~4.11!, since
Eq. ~3.5! yields upon time derivation

dF2r

dt
5LF2r1~b0

•b0!1/2B
dj0

dt
5L̃F2r . ~4.12!

It is also trivially seen that the other vectorsFir 5Cir for i
Þ2 keep the same evolution under Eq.~4.11! as under Eq.
~4.1!. The dual dynamics now reads

du

dt
52 tL̃u52 tLu2~b0

•b0!1/2 S u•B
dj0

dt DF2l . ~4.13!

It leads to a new family of left eigenvectorsFi l , dual to the
direct basis, whose second memberF2l has been defined
above and the others relate to their original counterpartsCi l
as

Fi l 5Ci l 2~Ci l •F2r !F2l . ~4.14!

Although the Fi l ’s were introduced as a rather form
trick, it should be emphasized thatF1l and F2l have an
appealing physical meaning. Parametrizing a perturbed
jectory forb asb5ed ln b(t)b0@t1dt(t)#1dbinc , where the
‘‘incoherent’’ part of fluctuationsdbinc is bound to be a lin-
ear superposition of the less dangerous modesFir for i>3,
one has indeed, to linear order indb,

d ln b5F1l•db, ~4.15!

dt5F2l•db . ~4.16!

These two relations will be useful in the computation
quadratic fluctuations to be presented in Sec. V. They sh
that by projecting out the multidimensional fluctuation fie
db onto the two vectorsF1l andF2l , one has access to th
most relevant part of it affecting, respectively, the amplitu
and the time delay of the pulse constituting the instanton
terms ofF1l and F2l , the self-consistency condition~4.9!
for u0 together with the requirement of zero pseudoenergyH
take the following form:

u0~t!5m1F1l~t!1m2~t!F2l~t!, ~4.17!

where

m2~t!5
1

2
u0
•B tBu05

1

2
j0
•j0. ~4.18!

Since from Eq.~4.17!, m2(t)5F2r .u0, and from the equa-
tion of motion ~3.6!, F2r•u05H1 1

2 j0
•j0, the relation

~4.18! is just a way of restatingH50. That Eq.~4.9! implies
Eq. ~4.17! results from the general link betweenC1l andF1l
@see Eq.~4.14!#. The reverse is true only under the supp
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mentary condition of constantH or m2(t)5Cte1 1
2 j0

•j0,
which is guaranteed by Eq.~4.18!. It is proven by checking
that in that caseu0(t), as given by Eq.~4.17!, obeys, as it
should, Eq.~4.4!,

du0

dt
52 tL̃u01

dm2

dt
F2l

52 tLu02~b0
•b0!1/2S u0

•B
dj0

dt DF2l1
dm2

dt
F2l

52 tLu01
d

dt S m22
1

2
j0
•j0DF2l

52 tLu01
dH
dt

F2l .

The great advantage of Eqs.~4.17! and Eq.~4.18! with
respect to~4.9! is that this couple of equations lends itself
iterative procedures leading inexorably to a fixed point
zero pseudoenergy, a task seemingly out of reach be
There is some unavoidable arbitrariness in the construc
proposed here, concerning in particular the definition of
vectorF2l , about which the reader may feel a little uncom
fortable. We suspect that these unwanted features do no
fect the final results since the original equations to be sol
as well as the corresponding conserved quantities all ha
clear mathematical definition whereF1l and F2l merge to-
gether intoC1l .

B. Practical implementing and results

The action densitys0(z) could be computed successful
for the three stochastic models defined in Sec. II using
iterative scheme outlined before. The shell lattice was fi
mapped onto a circle ofd sites, with d typically ranging
between 20 and 30. Finite size effects turn out to be co
pletely negligible at such lengths of the chain, due to
strongly localized structure of the instantons. To start
computation, we make a guess for both the unit fieldC(t)
5b(t)/(b•b)1/2(t) and the noisej(t) called henceforth
Cin(t) andjin(t). They are such that

Cn11
in ~t1Tin!5Cn

in~t!, jn11
in ~t1Tin!5jn

in~t!, ~4.19!

and

Cn1d
in ~t!5Cn

in~t!, jn1d
in ~t!5jn

in~t!. ~4.20!

Furthermore, the noise is normalized in such a way that
overlap b•u5C•B21@C#j takes on a prescribed valuem1
held as a control parameter during all the steps of the c
putation. A possible and convenient choice would be for
stanceCin(t)5C0(t), whereC0(t) is the deterministic so-
lution of the scaling exponentz0, and jin(t)5m1(b0

•b0)1/2B@C0#F1l
0 (t), where F1l

0 (t) is the left eigenvector
dual to b0(t), i.e., in the absence of noise. Figure 1 sho
how both vectorsF1l

0 and F2l
0 look like at a given time.

Their shapes will in fact evolve little as we let the scali
exponentz depart fromz0.
f
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In order to allow time reparametrization of the trajector
we first get an estimate of the instantaneous position of
pulse along the shell axis in our trial configuration by co
puting the following quantity:

nin~t!5 (
n50

d21

n@d#@Cn
in~t!#2. ~4.21!

The notationn@d# recalls that, due to cyclic boundary con
ditions, the shell indexn is now only defined modulod and
that in practice a continuous determination of this integ
should be adopted close to the center of the pulse wh
contributes mostly to the right-hand side of Eq.~4.21!. One
has by constructionnin(t1Tin)5nin(t)11(mod d). Hav-
ing recordednin(t) andjin(t) during a whole periodTin, we
integrate forward in time the nonlinear evolution equati
for C deduced from Eq.~2.11! by projecting out the longi-
tudinal part of its right-hand side:

dC

dt
5$N@C#~t!1B@C#~t!jin~t8!%' . ~4.22!

Note that the subindexG disappeared from the nonlinea
kernel NG because the Ito-drift term being linear inG does
not matter in the computation of the action to leading ord
~we shall see in the next section how to handle it to nex
leading order!. The most salient feature of Eq.~4.22! is that
the noise configuration is evaluated in relation not to the ti
t but rather to the actual instantaneous position of the pu
This means that the timet8(t) is automatically delayed o
advanced with respect tot, according to the recipe

nin~t8!5n~t! or t85~nin!21@n~t!#. ~4.23!

After integrating Eq.~4.22! long enough, a new traveling
wave stateCout(t),jout(t)5jin@t8(t)# will usually emerge
of periodTout, possibly different fromTin, and an averaged
growth factor

FIG. 1. On the upper~lower! picture we plot the configurations
at a given instant of the right~left! eigenmodes in the subspace
maximum Lyapunov exponentA0 around the deterministic solution
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Aout5
1

ToutEt

t1Tout

~N@Cout#1B@Cout#jout!.Coutdt.

~4.24!

The vectorsC1l(t), C2l(t) are then identified as the tw
eigenvectors oftUTout @defined in~4.8!# of the smallest~real
negative! Lyapunov coefficient and the correspondin
F1l(t),F2l(t) constructed as linear combinations of the
obeying for all times the following relations:

F1l•bout5F2l .
dbout

dt
51,

F2l•bout5F1l•
dbout

dt
50.

Finally, the trial noise configuration is renewed asjin(t)
5(bout

•bout)1/2tB@Cout#uin with

uin~t!5m1F1l~t!1m2~t!F2l~t!, ~4.25!

wherem2(t) is determined upon imposing the condition
zero pseudoenergy on the trial solution@uin(t),bout(t)#

uin
•N@Cout#1

1

2
~bout.bout!uin

•B@Cout# tB@Cout#uin50.

~4.26!

After settingbin(t)5bout(t), we are ready to repeat the op
erations described above as many times as needed un
fixed point of the transformation@such thatbout(t)5bin(t)
and jin(t)5jout(t)# is reached, which solves the problem
The good stability properties of the algorithm, as well as
iterative character, authorize a rather unsophisticated h
dling of issues raised by the time discretization. As requi
by the Ito convention, the equation of motion~4.22! was
integrated using a first-order Euler scheme with a time s
Dt5Tin/N about 350 times smaller than the period. T
time t8 was approximated as the multiple ofDt making the
relation~4.23! best satisfied. Similarly no higher-order inte
polation scheme was devised for estimating with accur
the output periodTout: it was again simply approximated a
the multiple ofDt making periodicity conditions~4.19! best
satisfied for the output. However, the time stepDt was
changed at each iteration of the loop so to maintain the t
resolution N constant. The efficiency of the method w
greatly improved when seeking solutions of exponentsz far
from z0 by increasingz gradually~through an increase of th
control parameterm1) using as a first guess solutions of
lower but close scaling exponentz8. In this way convergence
toward satisfactory self-similar solutions~of exponent z
varying by less than 1025 under iteration and pseudoenerg
H<1025) was attained in no more than 20 iterations.

We turn now to the presentation of our results. Figure
shows the action densitys0(z) for the three models~i!, ~ii !,
and ~iii ! defined in Sec. II. Values ofG were adjusted in
order to provide the same curvature ofs0(z)/G at the bottom
of the curves, reached evidently atz5z0. We see that the
variations of the zeroth-order action get sharper on thz
.z0 side~the only one displayed in Fig. 2!, as one goes from
model~i! to model~iii !. Figures 3, 4, and 5, referring, respe
l a

s
n-
d

p

y

e

2

tively, to models~i!, ~ii !, and~iii !, show the normalized co
herent fieldC and the random forceBj at increasing values
of z ~0.75, 0.85, and 0.95!. In all cases the random force i
found to be negative at the leading edge of the pulse
agreement with the physical picture advocated in@5#: growth
can be enhanced only by frustrating the energy transfer
cesses. For model~iii !, the coherent field itself gets negativ
at the forefront: noise in that case just helps to prepare
system in an initial condition consisting of a pulse and
negative well in front of it, which then collide. An interestin
upshot of our computations is that models like~ii ! or ~iii !
involving only a local coupling betweenb andj escape the
disaster met in the framework of model~i!, namely a cross-
over toward an asymptotic linear growth ofs0(z) with z,
already perceptible in Fig. 2. Such a behavior forbids
existence of velocity moments at arbitrary orders and
thus, clearly undesirable. It turns out that the whole shap

FIG. 2. Evolution of the normalized action per unit cascade s
s0(z)/G as a function of the effective scaling exponentz for the
three models studied in this paper. As a guide for the eyes we s
the parabola~solid line! ‘‘tangent’’ to the curves at the deterministi
minimum z050.72.

FIG. 3. Configurations of the normalized coherent fieldC and
the random forceBj for three instantons of exponents equal toz
50.75,0.85,0.95, obtained with the model~i! ~according to the no-
menclature defined in the text!. Note that theC field is only slightly
deformed asz increases.
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s0(z) for model ~i! can be pretty well understood from a
adiabatic approximation, which is carried out in the Appe
dix A, where solutions of arbitrary scaling exponents a
constructed using adequate time reparametrizations and
tions of the deterministic solution of scaling exponentz0.
The validity of this approximation for the model~i! is some-
how obvious from Fig. 3, where it can be checked that
stantons keep indeed almost the same shape, even for
sizeable variations ofz. Its failure in models~ii ! and ~iii ! is
probably due to too strong deformations of the solutions az
increases, again suggested by Figs. 4 and 5. The full non
ear treatment of the problem proposed in this paper w
however, necessary to reach this quite fortunate conclus

V. THE EFFECT OF QUADRATIC FLUCTUATIONS

A. Formal considerations

In order to compute the first order~in G) correction to the
action per unit cascade step@s1(z) in the expression~2.8!# of

FIG. 4. Same as in Fig. 3 but for the model~ii !. Note the more
pronounced deformation ofC upon increasingz, with respect to the
previous case.

FIG. 5. Same as in Fig. 3 but for the model~iii ! and only
instantons of exponentz50.75,0.85. The physical field now
changes its sign at the leading edge of the pulse.
-
e
la-

-
ite

n-
s,
n.

the density of probabilityPn(z), we have to expand the MSR
action up to quadratic order in fluctuationsdb around the
extremal trajectoryb0(t) of scaling exponentz and then sum
over them in a way that will be explained below. Since typ
cal fluctuating paths are not differentiable but rather beh
as Wiener paths with derivatives of the order1

2 , we shall
stick to time-discretized expressions in all the following m
nipulations of the path integral. For the sake of clarity, t
superscript 0 referring to the extremal trajectory in the p
vious section Sec. IV will be taken away, whereasbi ,ui will
be short-hand notations forb0(t i5 iDt),u0(t i5 i Dt),
wheredt is the ~small! time step used in the discretization

We start from Eq.~3.1! and the representation~3.3! of the
effective actionS@b,p#, expand it to quadratic order in bot
fluctuationsdp and db, and then integrate out the fluctua
tions of the auxiliary field. To begin, the timet f during
which we let the system evolve will be equal to the timenT
needed by the ideal instanton to performn steps along the
shell axis. The ideal initial and final configurationsbin5b0
and bf5bN describe then a pulse centered successiv
around the shells of index 0 andn. To quadratic order in
deviations from the extremal trajectory, the probability
joining the perturbed endpointsbin5b01db0 and bf5bN
1dbN in the timet f take the following expression:

P~b01db0,0;bN1dbN ,t f !

5e2ns0(z)/GE Ddbexp~2dS@db#2d2S@db# !, ~5.1!

where the measure of integration is defined as

Ddb5S 1

2pG Dt D dN/2 1

~b0•b0!d/2

1

udetB0u

3 )
i 51

N21 F ddbi

~bi•bi !
d/2udetBi u

G , ~5.2!

the linear variationdS reduces to the boundary term

dS@db#5
1

G
$uN21•dbN2u0•db0%, ~5.3!

and the quadratic one reads

d2S@db#5
Dt

2G (
i 50

N21 F ~bi•bi !
21/2Bi

21

3S dbi 112dbi

Dt
2Aidbi D G2

1dbi•Vidbi .

~5.4!

The drift and potential terms in Eq.~5.4! are found to be
given by the following relations:

Aidbi5Midbi1~dbi•]bi
!@~bi•bi !Bi

tBiui #, ~5.5!

and
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dbi•Vidbi52ui•~dbi•]bi
!Midbi

2
1

2
ui•~dbi•]bi

!2@~bi•bi !Bi
tBiui #, ~5.6!

whereM is, as in previous sections, the Jacobian matrix
the nonlinear kernelN@b#/(b•b)1/2.

Our task is to perform explicitly the integration over flu
tuations db1 , . . . ,dbN21 at intermediate steps in the pa
integral ~5.1!. First it will be convenient to get rid of the
anisotropy of the ‘‘mass’’ tensor acting in the kinetic term
d2S @21# by switching to normalized fluctuating fields de
fined as

dbi5~bi•bi !
1/2Bihi . ~5.7!

In this way the measure in the integral transforms in
@1/(b0•b0)d/2#(1/udetB0u) Dh with

Dh5S 1

2pG Dt D dN/2

)
i 51

i 5N21

dhi . ~5.8!

In performing this change of variables ind2S, we must pay
attention to the fact thatdbi 112dbi , as well ashi 112hi ,
are potentially of orderDt1/2. One finds that up toO(Dt3/2)
corrections~negligible in the continuum limit!, d2S becomes

d2S@h#5
Dt

2G (
i 50

N21 FQi
1/2S hi 112hi

Dt
1Di

hi 111hi

2
2Ai8hi D G2

1hi•Vi8hi , ~5.9!

where

Qi5
1

4 F11S bi 11•bi 11

bi•bi
D 1/2

tBi 11
tBi

21G
3F11S bi 11•bi 11

bi•bi
D 1/2

Bi
21Bi 11G , ~5.10!

Ai85Bi
21AiBi , ~5.11!

Vi85~bi•bi !
tBiViBi , ~5.12!

and

Di5
2

Dt
@~bi 11•bi 11!1/2Bi 11

1~bi•bi !
1/2Bi #

21@~bi 11•bi 11!1/2Bi 112~bi•bi !
1/2Bi #.

~5.13!

A few simplifications are now in order. On one hand w
expandQi asQi511dQi1O(Dt2), where

dQi5S bi 11•bi 11

bi•bi
D 1/2 tBi 11

tBi
211Bi

21 Bi 11

2
21

~5.14!

is of orderDt. TrackingO(Dt) terms ind2S, we may re-
placeQi by 1 everywhere in Eq.~5.9!, except for the kinetic
term (1/2G)@(hi 112hi)•Qi(hi 112hi)/Dt#, which accord-
f

ing to standard computation rules@18# in path integrals can
be reduced to (1/2G)@(hi 112hi)

2/Dt#1Tr dQi . On the
other hand, exact ways of tracing out quadratic forms l
d2S are available only once they are written in terms of t
midpoint field (hi 111hi)/2 rather thanhi ~which amounts to
going back at this stage to the Stratonovich prescriptio!.
Again to orderDt, the substitution of (hi 111hi)/2 to hi in
Eq. ~5.9! is harmless except in the cross-product te
2(1/G)(hi 112hi)•Ai8hi which gets into

2~1/G!~hi 112hi !•Ai8
hi 111hi

2
1

Dt

2
Tr Ai8 .

Setting things together, we arrive at the following expre
sion for the transition probability in the neighborhood of t
instanton:

P~dbin→dbf ,t f !5Udet
]h

]b
~t f !U

3e2S0(t f )Ge2I1(t f )e1/G$uN21•dbf2u0•dbin%

3Z@hin→hf ,t f #, ~5.15!

where we defined

I1~t f !5
1

2 (
i 50

N21

Tr dQi1
Dt

2 (
i 50

N21

Tr Ai2dAt f ,

~5.16!

and the reduced path integralZ@hin→hf ,t f # as

Z@hin→hf ,t f #5E
h05hin

hN5hfDh exp2d2S@h# ~5.17!

with

d2S@h#5
Dt

2G (
i 50

N21 Fhi 112hi

Dt
2Bi

hi 111hi

2 G2

1
hi 111hi

2
•Vi8

hi 111hi

2
, ~5.18!

and

Bi5Ai82Di . ~5.19!

One easily shows that in theDt→0 limit

(
i

Tr dQi→TrF ln
~bN•bN!1/2BN

~b0•b0!1/2B0
G5dAt f ,

since the periodicity of the instanton implies that detBN
5detB0, while

Dt(
i

Tr Ai→E
0

t f H ]b•@~b•b!B tBu#2
N@b#•b

~b•b!3/2J dt.

However, the ensuing expression forI1(t f) is not yet com-
plete to orderO(G0). This is because we discarded theO(G)
Ito drift term in our computation of extremal trajectorie
The small deviations induced by this term may be neglec
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3602 PRE 62DAUMONT, DOMBRE, AND GILSON
in I1(t f) and 2 ln Z@hin→hf ,t f # which are already first-
order corrections in aG expansion but they must be take
care of in the zeroth order term. Rather thann@s0(z)/G#, it
should readSG@bG

0 #, where the indexG denotes a quantity o
field evaluated in the presence of the Ito term specified in
~2.10!. To first order inG, we can take advantage of th
extremum property ofbG

0 and write down

SG@bG
0 #2S@b0#5SG@bG

0 #2SG@b0#1SG@b0#2S@b0#

'SG@b0#2S@b0#

5
1

GE0

t f
u0
•

N~b0#2NG@b0#

~b0
•b0!1/2

dt,

where the last identity just comes from the expression~3.4!
of the action. Rearranging things under the assumption~sat-
isfied by each of the particular models that we consider!
that the entryBjk of the matrix B involves homogeneou
monomials of degreel built up only from componentsCm
with mÞ j @one hasl 50 for model~i! and l 52 for models
~ii ! and ~iii ! defined in Sec. II#, one finds thatI1(t f) in Eq.
~5.15! should finally be understood as

I1~t f !5
~12d!

2
At f1

~2l 23!

4 E
0

t f
b0
•B tBu0dt.

~5.20!

This preliminary work being done, the discussion w
now concentrate on the reduced path integralZ@hin
→hf ,t f #. We first restrict our attention to the case of fixe
endpointshin5hf50. The instantons found in the previou
sections are physically satisfactory only if the quadratic fu
tional d2S@h# is positive for all$hi% such thath05hN50 ~we
shall see later on that this is not a sufficient condition in
present problem!. According to standard results of function
analysis@19#, positiveness ofd2S@h# is tantamount to the
absence of points conjugate to the origin during the wh
time interval @0,t f #. Recall that the definition of conjugat
points goes as follows:d being the dimension of the spac
~here the number of shells! we constructd initial conditions
(h0

(a),h1
(a)) such that

h0b
(a)50, h1b

(a)5Dt dab1O~Dt2!,

whereb is a shell index running asa between 1 andd and
we let them evolve under the Euler-Lagrange equations
rived fromd2S@h#. The timet i5 iDt is said to be conjugate
to the origin if the system formed by thed vectorshi

(a) gets
degenerate there. One can build a matrixUi such thatUi

ab

5hia
b , in terms of which the initial conditions read

U050, U15Dt1O~Dt2!, ~5.21!

while Ui 11 ~for 1< i<N21) is obtained fromUi 21 andUi
through a matrix Euler-Lagrange equation, derived from
~5.18! and conveniently cast into the following form:
q.

-

e

e

e-

.

S 1

Dt
1

1

2
tBi D Pi2S 1

Dt
2

1

2
tBi 21D Pi 21

5
1

2
Vi8

Ui1Ui 11

2
1

1

2
Vi 218

Ui 211Ui

2
, ~5.22!

where

Pi5
Ui 112Ui

Dt
2Bi

Ui1Ui 11

2
~5.23!

can be seen as a matrix momentum. In the absence of
jugate points, detUi never vanishes except at the origin a
one gets the following simple expression for the reduc
path integral, provided theDt→0 limit is ultimately taken,

Z@hin50→hf50,t f #5S 1

2pG D d/2 1

AdetU~t f !
.

~5.24!

Details on this result, which may be found in many textboo
on path integrals@20–22#, are provided in Appendix B. A
very nice feature of the proof of the connection of the po
tiveness ofd2S@h# with the absence of conjugate points
that it also provides an efficient way for computing the r
duced path integral withhf arbitrary ~but still small natu-
rally!. Indeed the main idea consists of adding tod2S@h# a
boundary term of the form

d2S852
1

2G (
i 50

N21

~hi 11•Wi 11hi 112hi•Wihi !,

whereW is a symmetric matrix at all times and then selecti
the right W such thatd2S1d2S8 becomes a perfect squar
In order to achieve this task,Wi must be a solution of a
matrix Riccati equation~see again Appendix B for details!
which, upon the substitution of a new unknown matrixUi
defined implicitly by the relation~for 0< i<N21)

1

2
~WiUi1Wi 11Ui 11!5

Ui 112Ui

Dt
2Bi

Ui1Ui 11

2
,

~5.25!

is found to be nothing but the matrix Euler equation~5.22!. It
follows that the result~5.24! may be extended to the case
an arbitrary final configurationhf as

Z@hin50→hf ,t f #5S 1

2pG D d/2 1

AdetU~t f !

3exp2
1

2G
hf•W~t f !hf , ~5.26!

whereU(t f) andW(t f) are to be computed by letting bot
matrices evolve fromt50 to t5t f according to Eqs.~5.22!
and ~5.25!. There are some subtleties about the choice
initial conditions and proper counting of the number of u
knowns whose discussion we prefer to relegate to Appen
B.
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B. A physical definition of s1„z…

We are now in a good position to compute the next
leading order term s1(z) in the expansion of
2 limn→1`(1/n)ln Pn(z) in powers ofG. We shall obtain an
estimate for Pn(z) by summing over all the trajectorie
which lead to the same growth of the pulse as the id
instantonb0(t) aftern cascade steps. In the smallG limit, all
statistically relevant trajectories remain close tob0(t) and
we may define unambiguously their ‘‘arrival’’ time at th
shell of indexn as the first timetn such that

b~tn!5b0~tn
05nT!1db8, ~5.27!

wheredb8 reduces to a linear combination of stable ‘‘irre
evant’’ modesFir (tn

0) for i>3. Up to multiplicative factors
growing at most algebraically withn, we can then write
Pn(z) as the following integral over the arrival time and th
position of the endpoint

Pn~z!'E P@b0~0!→b0~tn
0!

1db8,tn#d„F1l~tn
0!•db8…d„F2l~tn

0!•db8…dtnddb8.

~5.28!

The density of probability in the right-hand side of this e
pression is known from Eqs.~5.15! and ~5.26!, where t f
should be taken equal totn and dbf equal to db5b(tn)
2b0(tn). Calling dt5tn2tn

0 the time delay, we get the
following relation betweendb anddb8, valid up toO(dt3)
corrections:

db5db81b0~tn
0!2b0~tn!

5db82dt
db0

dt
~tn!1

1

2
dt2

d2b0

dt2
~tn

0!. ~5.29!

Note thatdt scales typically likeAG in the semiclassica
limit. We may thus, to leading order, replacetn by tn

0 and
identify db with db82dt(db0/dt)(tn

0) everywhere in the
integrand of the right-hand side of Eq.~5.28!, except in
(1/G)@S0(tn)1u0(tn)•db# @the combination appearing i
the exponential prefactor of Eq.~5.15!# which deserves more
care. It follows from the definition of the action that@again
up to O(dt3) corrections#

S0~tn!5S0~tn
0!1dt

@j0~tn!#2

2
2

1

2
dt2j0~tn

0!•
dj0

dt
~tn

0!,

~5.30!

and from Eq. ~5.29! @together with the conditionu0(tn
0)

•db850# that

u0~tn!•db5dt
du0

dt
~tn

0!•db82dtu0~tn!•
db0

dt
~tn!

1
1

2
dt2u0~tn

0!•
d2b0

dt2
~tn

0!. ~5.31!
al

When summing these two equations, linear terms indt dis-
appear as expected and we are left after some rearrangem
with the remainder of quadratic order in fluctuations,

1

G
$S0~tn!1u0~tn!•db%5

1

2
dt2

du0

dt
~tn

0!•
db0

dt
~tn

0!

1dt
du0

dt
~tn

0!•db, ~5.32!

where we setdb[db82dt(db0/dt)(tn
0), so that the time

delay dt is simply expressed in terms ofdb as dt5
2F2l(tn

0)•db.
The end of our theoretical considerations is reached w

the following expression forPn(z):

Pn~z!'e2ns0(z)/G
e2I1(tn

0)

AdetU~tn
0!
E e2(1/2G)h•W̃(tn

0)h

~2pG!d/2

3d„F1l8 ~tn
0!•h…dh, ~5.33!

where F1l8 (t)5(b0
•b0)1/2 tBF1l(t) ~so that F1l8 •h5F1l

•db), W̃5W1DW, with W defined in Sec. V A and

h•DWh522~F2l8 •h! ~b0
•b0!1/2

du0

dt
•Bh

1~F2l8 •h!2
du0

dt
•

db0

dt
. ~5.34!

We see that the condition of positiveness of the matrixU
must be supplemented by the condition of positiveness of
restriction W1 of W̃ to the (d21)-dimensional space or
thogonal toF1l8 , in order to make the instantons found in th
preceding section physically meaningful. Provided these
requirements are met,s1(z) is obtained as

s1~z!5 lim
n→1`

1

n
$I1~nT!1 1

2 ln detU~nT!1 1
2 ln detW1~nT!%,

~5.35!

which is the main result of this section.
Tracing back all the steps leading to Eq.~5.35!, one could

object to our starting point~5.28! the fact that fluctuations o
the initial endpoint are not taken into account. This could
done at the expense of rather more cumbersome formula
the reduced path integralZ@h(0)→h(t)# when bothh(0)
and h(t) do not vanish. However, we believe on physic
grounds that the exploding associated with the instan
washes out any influence of the fluctuations at large sc
on the part of the action scaling linearly with the number
stepsn. Therefore expression~5.35! should be exact.

C. Practical implementing and results

The most difficult part of the computation ofs1(z) lies in
the evaluation of detU(t) and detW1(t) ~as defined in Sec
V B!, which requires good control of all the eigenvalues
these two matrices. Numerical instabilities could be avoid
for a time long enough to get a precise estimate
(d/dt)ln detUW1 by using the exact expression of the m
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3604 PRE 62DAUMONT, DOMBRE, AND GILSON
trix Euler equation~5.22! and the relation~5.25! betweenW
andU. In this problem there are two Goldstone modes as
ciated with uniform rescaling and time translation of the
stanton: as a consequence, the matrix (b0

•b0)1/2BU(t) @re-
spectively, (b0

•b0)21tB21W̃B21# is expected to have two
eigenvalues scaling liket ~respectively, like 1/t) ~in order to
obtain the simplest transcription of these symmetries,
has to go back to the original fluctuation fielddb5(b0

•b0)1/2Bh and the change of variable influences eigenval
of U andW̃). When restrictingW̃ to the (d21)-dimensional
space orthogonal toF1l8 @[(b0

•b0)1/2BF1l #, one loses one o
the eigenvalues scaling like 1/t, so that there remains a
algebraic factorAt in the productAdetU(t)AW1(t), which
we had to take away by hand in order to make more c
spicuous the leading exponential growth of this quantity.
give an idea of the accuracy of our procedure and confi
the soundness of the intricate formula~5.35! that was pro-
posed fors1(z), we show in Fig. 6 the behavior of variou
relevant quantities in the case of model~ii !, and for a mod-
erate scaling exponentz50.8. It is observed in the picture o
the top that the logarithmic derivatives of detU and detW
exhibit a linear behavior with almost opposite slopes. It c
be shown by considering simpler and exactly solvable m
els for quadratic fluctuations without intershell couplings th
this strange effect mostly reflects the stiff variations suffe
by the noise variance on any shell, as the latter moves b
from the leading edge of the instanton to its rear end. T
argument is presented in Appendix C, since it may help
reader to get a feeling for the order of magnitudes at play
both U andW matrices.

It could be tempting at this level to approximates1(z) as

lim
t→`

d

dt
$I11 1

2 ln detWU%, ~5.36!

This expression would come out if, without great physic
justification, it were decided to sum over all positions of t
final endpoint in the path-integral formulation in order
estimate the volume of the basin of attraction of the inst

FIG. 6. Test for the convergence of several relevant quant
entering the calculation of the functionS1(z). We show the case o
the model~ii ! at z50.8.
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ton. We found, however, that the matrix momentumWU
develops invariably a negative eigenvalue after some ti
so that the projection onto the restricted phase space in
duced in Sec. V B is a necessary step for restoring the
tistical stability of the instanton. Further, even before th
instability occurs, there was found to be a residualt2 term in
ln detWU which forbids any reliable estimate fors1(z) to be
deduced from Eq.~5.36!. The picture at the bottom of Fig. 6
shows by contrast that the more precise quan
detU detW1 quickly settles to a perfect exponential growt
once algebraic transients have been factored out. Note
the positiveness of bothU andW1 could be checked in any
instance.

In all the models that we investigated, we found that t
first-order corrections1(z) to the action takes an approx
mate parabolic shape of positive or negative concavity, c
tered around a value ofz different from z0. In the case of
model~ii !, the concavity ofs1(z) is opposite the one ofs0(z)
and the maximum ofs1(z) is reached at a scaling expone
z1'0.6, significantly lower thanz050.72. This means tha
the minimum of the total action densitys(z)5s0(z)/G
1s1(z) @for values ofG such thats(z) remains concave as i
should# is displaced toward the side of larger exponents, j
as a result of fluctuations. The trend is just the opposite
the model~iii !, wheres1(z) presents this time the same co
cavity ass0(z) and a minimum on the left side ofz0. Figure
7 shows the graph ofs0(z)/G1s1(z) that is obtained for
model~ii ! and for the valueG50.58, which we believe to be
of some relevance for the GOY model~see Sec. VI!.

VI. COMPARISON WITH NUMERICAL DATA ON THE
STATISTICS OF COHERENT EVENTS IN THE

GOY MODEL

The systems we have analyzed here were introduce
describe inertial singular structures of the GOY model.
check their physical relevance, we first have to define a c
of events observed in full simulations of the GOY model th
is likely to be the best candidate for a description in terms
instantons. It is clear that relative maxima of the instan

s FIG. 7. Graph~stars! of s0(z)/G1s1(z) for G50.58 and model
~ii !. The parabolic fitSquad5a(z2z!)2 yields z!50.74 and a
530.
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neous energy flux en(t) @with en5kn
22Re$(1

2e)Q2bn22bn21bn1bn21bn11bn%# are useful observable
for tracking the passage of coherent structures across
whole inertial range. But their total number is found to gro
with n askn

2/3, due to the acceleration of time scales typic
of the Kolmogorov energy cascade. One may consider
they develop on treelike patterns in the (n,t) plane, which
are renewed at each turnover of the large scales~TOTLS!.
We say that such trees provide a realization of the propa
tion of a coherent event from shelln0 to shelln.n0, when-
ever then2n0 nodes of the tree closest in time to the
supposedly common ancestor on the shell of lower indexn0
appear in the order of increasing shell index. In order
discard too weak, and therefore irrelevant, events, we
posed thaten0

be greater than half the mean energy flu
Figure 8 shows the logarithm of the histogram of the log
rithmic amplitudesAn5 lnuenu1/3 for all relative maxima on
one hand and for the restricted class of coherent events
fined above on the other hand, withn055 ~far enough from
the forcing range! andn511 ~well in the inertial range!. The
Reynolds number of the simulation isRe5108. Statistics
have been run over 63104 TOTLS, and on average there a
three ‘‘coherent lines’’ for two TOTLS. We note that th
statistics of coherent events is very close to log-normal
uenu>O(1).

The effective exponentz of a coherent burst aftern2n0
cascade steps is obtained via the relationAn5An0

1(n

2n0)(z22/3)ln 2. If anomalous scaling is preserved in t
Re→` limit, the pdf of scaling exponentsz should behave a
large cascade lengths asPn(z);e2ns(z), where generically
s(z) will present a quadratic minimum at somez!, with an
expansion aroundz! that we write ass(z)5a(z2z!)2

1•••. The histogram of the variableAn2An0
should conse-

quently evolve, asn2n0 increases, towards a Gaussi
shape, whose centerDn and varianceSn

2 grow linearly withn
and relate toz! anda as

Dn;nln2~z!22/3!, Sn
2;

n

2a
~ ln 2!2. ~6.1!

FIG. 8. Histograms of the energy flux in the log-log plot, i
volving all relative maxima ofen or only those associated wit
coherent events. The shell indexn511, the Reynolds numbe
Re is 108, and the number of TOTLS is 63104.
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The actual behaviors ofDn and22Sn
2 , obtained from a very

high Reynolds number simulation (Re5109, which sets the
dissipative scale at the shell indexnd5 3

4 ln2Re523) are plot-
ted in Fig. 9. Error bars were estimated by varying the ran
of the quadratic fit to the logarithm of the histogram ofAn
2An0

, as well as the domain of initial amplitudesAn0
used to

construct this histogram. It appears that the two graphs
rather far from simple straight lines : this is especially tr
for the variance, whose graph from concave gets convex
yond the shell index 15. From the investigation of low
Reynolds numbers Re5108 and 107 we could deduce tha
this transition occurs at a shell indexnc always of the order
of nd28 and defines a clear cut boundary between the in
tial range and a surprisingly wide previscous range. We
lieve that the direct action of viscosity on intense bur
starts to show up only at the shell indexnd23, beyond
which the local slope of theDn graph ceases to vary an
points to a value of the average growth exponent of cohe
structures precisely equal toz0. The fact thatnc lies rather
far from nd means that the cut off imposed by viscosi
exerts a long-range influence on the statistics of the rand
environment seen by a coherent structure. A decent lin
regime for both the drift and the variance is observed in
range 15,n,21, from which we get the two estimatesa
52964 andz!50.746331023. Assuming that the fitting
range 10,n,16 provides the best clue to the asympto
scaling of the inertial range, one gets the second set of va
a54566 andz!50.756331023. It appears that the phys
ics of the previscous range is quite well reproduced wit
our modeling~ii ! of the incoherent background. By choosin
G50.58 ~a value hopefully small enough to fall within th
range of validity of semiclassical approximations!, one ob-
tains, as Fig. 7 shows, an almost perfect parabolic shap
s(z)52@S0(z)/G1S1(z)#, with a maximum reached atz!

50.74 and a curvaturea522s9(z!)529. However, the pa-

FIG. 9. The two quantitiesDn and22Sn
2 ~encoding the Gauss

ian central part of the histogram of the growth variableAn2An0
) vs

n. The Reynolds number Re is 109 and the dissipative shell ha
index nd523. The two pieces of straight line show the linear fi
that were used to extract the values ofz! and a in the previscous
range.
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3606 PRE 62DAUMONT, DOMBRE, AND GILSON
rameterG cannot be adjusted so as to account for the hig
values ofa andz! characterizing the inertial range. It woul
seem that in this range of scales it gets necessary to as
some bias in the incoherent fluctuations boosting the incre
of the renormalized value ofz! while keeping the noise
width small.

VII. CONCLUSION

We have developed a general scheme for computing
merically self-similar instantons in scale-invariant stochas
dynamical systems. As concerns the physics of the G
model, we believe that the bunch of results presented h
gives strong support to the relevance of an approach focu
from the outset on structures in order to understand inter
tency and treating the rest of the flow as a noise of w
amplitude. In particular the trend toward log-normal stat
tics of coherent structures is nicely recovered. The deta
study of various stochastic extensions of the GOY mo
shows that the resulting pdf of scaling exponents of singu
structures is very sensitive to the hypothesis made on
coupling of noise to the velocity gradient fields.

We hope that our approach will be useful for attacking
3D Navier-Stokes dynamics along similar lines, once an
equate decomposition of the flow into coherent and incoh
ent parts will have been introduced. An application of t
method to Kraichnan’s model of passive scalar advec
formulated on a lattice of shells has already been attem
@22,23#. It has given encouraging results with regard to t
validity of a semiclassical analysis, even in situations wh
a small parameter~like G in the present problem! is missing.
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APPENDIX A

We carry out in this appendix the adiabatic approximat
alluded to in Sec. IV B. We look for self-similar instanton
within the restricted manifold of configurations of the typ

b~t!5ex( t̃)b0~ t̃ !, ~A1!

whereb0(t) is the deterministic solution of scaling expone
z0 ,t̃ can be thought of as a ‘‘proper’’ time referring to th
actual position of the pulse. The two variablest( t̃) andx( t̃)
parametrize then local changes of speed and amplitude
the pulse, which keeps the same shape as in the absen
noise. Note that if Eq.~A1! is to represent a self-simila
instanton of scaling exponentzÞz0 ,x( t̃) must obey the con-
straint

x~ t̃1T0!2x~ t̃ !5~z2z0!ln Q . ~A2!
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We plug now the Ansatz equation~A1! in the equation of
motion ~2.11! and project it onto the two directionsF1r
5b0 andF2r5db0/dt. We get by doing so

dt̃

dt

dx

dt̃
5F1l•Bj, ~A3!

dt̃

dt
215F2l•Bj. ~A4!

If the other dimensions of the configuration space are
glected, Eqs.~A3! and ~A4! form a closed two-dimensiona
system, which may be rewritten as

dx

dt̃
5z1 , ~A5!

12
dt

dt̃
5z2 , ~A6!

where correlation functions ofz1 andz2 read

^z i~ t̃ !z j~ t̃8!&5
dt

dt̃
Vi j d~ t̃2 t̃8!, 1< i , j <2, ~A7!

with

Vi j 5Fi l •B tBFj l . ~A8!

The Gaussian action density associated with one cascade
within this restricted stochastic system is given by

s̃5
1

2E0

T0
dt̃S dt

dt̃
D 21

z i~V21! i j z j . ~A9!

Once expressed in terms of the diffusing variablesx( t̃) and
t( t̃), it becomes

s̃5
1

2E0

T0
dt̃H S dt

dt̃
D 21

@ ẋ2~V21!1112ẋ~V21!121~V21!22#

1
dt

dt̃
~V21!222@ ẋ~V21!121~V21!22#J . ~A10!

The extremization ofs̃ with respect todt/dt̃ leads to

dt

dt̃
5$~ ẋ2~V21!1112ẋ~V21!121~V21!22#V22%

1/2,

~A11!

and to an effective action for the remaining variablex

s̃e f f@x~ t̃ !#5E
0

T0
dt̃„$@ ẋ2~V21!1112ẋ~V21!121~V21!22#

3~V21!22%
1/22@ ẋ~V21!121~V21!22#…. ~A12!

Assuming the coefficientsV11, V12, and V22 to be almost
constant inside the time intervalT0, one deduces an analyti
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expression fors0(z) from s̃e f f by just replacing in the inte-
gral ẋ by (z2z0)ln Q/T0 @which follows from Eq.~A2!#. One
gets in particular for large enoughz2z0,

s0~z!;~z2z0!ln Q $@~V21!11~V21!22#
1/22~V21!12%,

~A13!

i.e, a linear behavior as observed for the true solution
model ~i!.

APPENDIX B

We derive the formal expression of the reduced path
tegralZ@0→hf ,t f # given in Eq.~5.26! of Sec. V of the text.
The proof is presented in many textbooks on path integ
but, as far as we know, always using a continuous defini
of time. This leaves some ambiguity in the right equatio
that matricesU andW should obey, once time is discretize
for computing purposes. We found that this issue is cru
mostly for evaluatingW and preserving its symmetry prop
erties. This is why we feel it useful to show how every st
of the proof given in the continuum limit receives an exa
transcription in the discrete time case.

We start from the quadratic functional

d2S@h#5
Dt

2G (
i 50

i 5N21 H Fhi 112hi

Dt
2Bi

hi 111hi

2 G2

1
hi 111hi

2
•Vi8

hi 111hi

2 J . ~B1!

Upon the addition of the boundary term

2~1/2G!( i 50
N21$hi 11•Wi 11hi 112hi•Wihi%,

it becomes without any approximation

d2S̃@h#5
Dt

2G (
i 50

i 5N21 XH Q̃i
1/2Fhi 112hi

Dt
2Q̃i

21

3S Bi2
Wi1Wi 11

2 Dhi 111hi

2 G J 2

1
hi 111hi

2
•Ṽi

hi 111hi

2
C, ~B2!

where

Q̃i512
Dt

4
~Wi 112Wi ! ~B3!

and

Ṽi5Vi81 tBiBi2
Wi 112Wi

2
2S tBi2

Wi1Wi 11

2 D
3Q̃i

21S Bi2
Wi1Wi 11

2 D . ~B4!

We see thatd2S̃@h# reduces to the time integral of a sing
~positive! square, if and only ifWi is such that for all 0< i
<N21
f

-

ls
n
s

l

t

Vi81 tBiBi2
Wi 112Wi

2
2S tBi2

Wi1Wi 11

2 D
3Q̃i

21S Bi2
Wi1Wi 11

2 D50. ~B5!

We note that Eq.~B5! forcesWi to remain symmetric for all
time, provided thatW0 ~arbitrary at this stage! is chosen to
be such. In order to solve the above Ricatti matrix equati
one makes the following change of matrix variable:

S Bi1
Wi1Wi 11

2 D S Ui1Ui 11

2 D5Q̃i

Ui 112Ui

Dt
. ~B6!

From the expression~B3! of Q̃i , it is easily shown that Eq
~B6! is equivalent to Eq.~5.25! quoted in the text. Further
more, by multiplying both sides of Eq.~B5! by (Ui
1Ui 11)/2 on the right, one gets for 0< i<N21

Wi 11Ui 112WiUi

Dt
52 tBi

Ui 112Ui

Dt

1~ tBiBi1Vi8!
Ui1Ui 11

2
. ~B7!

By half-summing the two relations yielded by Eq.~B7! at
subsequent valuesi 21 and i of the temporal index~with
then 1< i<N21), and using Eq.~5.25! after noticing that

Wi 11Ui 112Wi 21Ui 21

2Dt

5
~Wi 11Ui 111WiUi !2~WiUi1Wi 21Ui 21!

2Dt
,

one can eliminateW and check thatU obeys the matrix Euler
equation~5.22!, as promised in the text.

So far, we have proven that, as long as the matrixU may
be inverted, the positiveness ofd2S is guaranteed, since in
that case the matrixW exists at all times@from Eq.~B6!# and
allows one to transform the initial quadratic form into th
time integral of a single square. We show now how the
matrices lead to a compact expression ofZ@h050→hf ,t f #.
We first note that Eqs.~B6! and ~B7! provide 2N relations
for 2(N11) unknowns$U0 , . . . ,UN%,$W0 , . . . ,WN%. This
gives much freedom in the choice ofW0 and U0. In the
particular case ofh050, it is convenient to setU050 and
W0U051 ~which should be understood as the limit ase
→01 of U05e andW05e21, so thatW0 is indeed symmet-
ric!. A quick inspection of Eqs.~B6! and~B7! reveals thatUi
and Wi behave then respectively asiDt and (iDt) 21 to
leading order inDt for 1< i !N. One has, for instance, th
exact resultW15(Dt)212(B01 tB0)/21( tB0B01V08). Re-
call that the quantity we wish to estimate reads now
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Z@0→hf ,t f #5e2(1/2G)hf•WNhf

3E Dhdd~hN2hf !e
2(1/2)(

i 50

N21

ci 11•Q̃ici 11,

~B8!

where we defined the new fieldci 11 ~for 0< i<N21) as

ci 115hi 112hi2DtQ̃i
21S Bi1

Wi1Wi 11

2 Dhi1hi 11

2
,

~B9!

and the measure of integrationDh as

Dh5 )
i 50

N21
dhi 11

~2pGDt!d/2
. ~B10!

With the help of Eq.~B6!, the transformation~B9! may be
rewritten as

ci 115hi 112hi2S Ui 112Ui

2 D S Ui1Ui 11

2 D 21

~hi1hi 11!.

~B11!

This relation is easily inverted by settinghi5Uizi , which
gives

ci 115H Ui1Ui 11

2
2

Ui 112Ui

2 S Ui1Ui 11

2 D 21 Ui 112Ui

2 J
3~zi 112zi !

5Ui 11S Ui1Ui 11

2 D 21

Ui~zi 112zi !

5S Ui
211Ui 11

21

2 D 21

~zi 112zi !,

so that we deduce~under the assumptionh050), for 0< i
<N21,

hi 115Ui 11F (
j 50

i S U j
211U j 11

21

2 D cj 11G . ~B12!

Sincehi 11 is linearly related to thecj 11’s of index j lower
thani, only the diagonal blocksUi 11@(Ui

211Ui 11
21 )/2# enter

the Jacobian of the transformation and one has

JN[U ]hi 11

]cj 11
U5 )

i 50

N21
det~Ui1Ui 11!

det2Ui
. ~B13!

To enforce the boundary conditionhN5hf at time t f in
terms of the new variablesci , we introduce the usual inte
gral representation of thed function:

dd~hf2hN!5E da

~2p!d
e2 i a•$hf2UN (

i 50

N21

[(Ui
21

1Ui 11
21 )/2]ci 11%.

~B14!

After performing the Gaussian integration over theci ’s, one
arrives at
Z@0→hf ,t f #5 )
i 50

N21 H det~Ui1Ui 11!

det2Ui

1

AdetQ̃i

J
3e2(1/2G)hf•WNhf

3E da

~2p!d
e2 i a•hfe2(DtG/2)a•Ga,

~B15!

where

G5UNF (
i 50

N21 S Ui
211Ui

21

2 D Q̃i
21S tUi

211 tUi 11
21

2 D G tUN .

~B16!

This awkward nonlocal operatorG is greatly simplified when
the singular initial condition already mentioned,U05e,W0
5e21 with e→01, is adopted. In that case,G is completely
dominated by the first term of the series in the right-ha
side of Eq. ~B16! which diverges ase21 and, to leading
order ine, one has

G'
1

Dt
UN~U0

21W0
21tU0

21! tUN . ~B17!

The summation overa can then be done and, sinceG21

vanishes in thee→01 limit, one gets

Z@0→hf ,t f #5S 1

2pGDt D d/2det~U01U1!

detUN

3 )
i 51

N21 H det~Ui1Ui 11!

det 2Ui

1

AdetQ̃i
J

3e2(1/2G)hf•WNhf . ~B18!

Note that all the manipulations presented in this appen
were devoid of any approximation. It is finally a straightfo
ward matter~details will be skipped here!, to check that in
theDt→0 limit, the infinite product in front of the exponen
tial in Eq. ~B18! reduces to (1/2pGDt)d/2(1/AdetUN),
thereby making Eq.~B18! identical to the result~5.26!
quoted in the text.

APPENDIX C

We consider the following quadratic action:

S2@xn#5
1

2 (
n50

d21 E
0

t

dt
ẋn

2

an~t!
, ~C1!

where, in order to mimic the stochastic models studied in t
paper, the variancean(t) evolves on each shell as

an~t!5~b0
•b0!~Cn22

0 Cn21
0 !2, ~C2!

i.e., as the variance of noise, (b0
•b0)Bnn , for model~ii !. In

Eq. ~C2!, b0(t) may be thought of as the deterministic se
similar solution, andan(t) can therefore be cast into th
form
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an~t!5e2A0tã~t2nT0!, ~C3!

where the functionã(t) satisfies

ã~t1dT0!5ã~t! ~C4!

because of the periodicity of the shell lattice. Let us assu
that the instanton is centered around the shell of inden
50 at timet50. At its leading edge (n.0),Cn decreases
very abruptly as exp(2crn), with r 5(A521)/2 andc a con-
stant of order 1. This essential singularity comes from
necessity of balancingdCn /dt with the dominant term
Q2(12e)Cn22Cn21 of the nonlinear kernel of the GOY
model in this range of scales. In the trail of the instant
(n,0), one has a much smoother behaviorCn;Qnz0

[enA0T0. When the shell lattice is periodized, the leadi
edge and the tail of the instanton have to be glued toge
and the locus of matching, as well as the residual amplit
of Cn at that place, will be imposed by the side supporti
the slowest variations ofCn . We conclude that in a cyclic
chain containingd shells, most of them reside in the exp
nential tail of the instanton, so that we may write~again
under the hypothesis of an instanton initially centered aro
the originn50 and with a shell indexn defined between 0
andd21)

an~0!;e4(n2d)A0T0. ~C5!

Thus, the range of values spanned by the functionã is very
large and scales with the total number of shells likee4dA0T0.
For shells on the exponential ramp,an(t) first decreases ex
ponentially in time likee22A0t ~becauseCn decreases like
e2A0t in this region! and goes by a sharp maximum of ord
e2nA0T0 at the timetn;nT0 when the center of the instanto
reaches the corresponding shell. Then it starts again to
crease exponentially.

Having understood these basic dynamical features, we
compute the matricesU and W introduced in Sec. V A for
the quadratic action given by Eq.~C1!. To make contact with
the normalized fieldh used in the real problem, we switc
from the variablexn to the variableyn5xn /Aan. This trans-
forms the original action into

S2@yn#5
1

2 (
n50

d21 E
0

t

dtS ẏn1
1

2

ȧn

an
ynD 2

. ~C6!

Since there is no intershell coupling, the matricesU andW
are diagonal in the shell index. The extremization ofS@yn#
with respect toyn leads to the couple of first-order differen
tial equations

pn5 ẏn1
1

2

ȧn

an
yn , ~C7!

ṗn5
1

2

ȧn

an
pn . ~C8!

One has simplyUnn5yn andWnnUnn5pn . The solution of
Eqs.~C7! and~C8! under the initial conditionsyn(0)50 and
pn(0)51 is
e

e

n

er
e

d

e-

an

pn~t!5
Aan~t!

Aan~0!
, ~C9!

yn~t!5
1

Aan~0!

1

Aan~t!
E

0

t

an~t8!dt8. ~C10!

As long ast,tn5nT0, the instanton has not passed throu
the shell of indexn and the integral in the right-hand side o
Eq. ~C10! is dominated by the neighborhood of the low
boundt50. We deduce that for indicesn.t/T0

Unn~t!5
eA0t

2A0
, ~C11!

Wnn~t!52A0e22A0t. ~C12!

By contrast, whent gets larger thantn ~by some units of
time T0), the integral on the right hand-side of Eq.~C10! is
dominated by the neighborhood of the timetn where an
takes its maximal value. We get

yn~t!;IAan~tn!

an~0!
eA0(t2tn),

pn~t!;Aan~tn!

an~0!
e2A0(t2tn),

where I is a number of order 1. It follows that for indice
n,t/T0,

Unn~t!;Ie2(d2n)A0T0eA0t, ~C13!

Wnn~t!;I 21e2nA0T0e22A0t, ~C14!

where we used the estimate~C5! for an(0). SinceWnnUnn
;e2A0t for n.t/T0 and ;e2dA0T0e2A0t for n,t/T0, we
conclude that detWU increases exponentially likeedA0t. But
this property is not shared by detU or detW considered in-
dividually. Indeed, since the number of shells crossed by
instanton increases linearly in time, Eqs.~C11! and ~C13!
show that

detU;S I

2A0
D t/T0

e3A0dte2A0(t2/T0), ~C15!

while from Eqs.~C12! and ~C14!,

detW;S I

2A0
D 2t/T0

e22A0dte1A0(t2/T0). ~C16!

This argument captures apparently a good part of the phy
of fluctuations around a moving self-similar system, thou
badly treating hybridization effects between neighbori
shells. It also explains how large~small! numbers are gener
ated in the spectrum of the matrixU(W) and why in practice
one does not have much freedom in the choice of the t
number of shellsd.
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