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It has been shown recently that the intermittency of the Gledzer-Ohkitani-Yat@@¥) shell model of
turbulence has to be related to singular structures whose dynamics in the inertial range includes interactions
with a background of fluctuations. In this paper we propose a statistical theory of these objects by modeling the
incoherent background as a Gaussian white-noise forcing of small strEndtlyeneral scheme is developed
for constructing instantons in spatially discrete dynamical systems and the’ IClametion governing the
probability distribution of effective singularities of exponers computed up to first order in a semiclassical
expansion in powers df. The resulting predictions are compared with the statistics of coherent structures
deduced from full simulations of the GOY model at very high Reynolds numbers.

PACS numbeps): 47.27.Ak, 03.65.Sq

[. INTRODUCTION elevate this still rather qualitative proposal to the rank of a
semiquantitative theory and to test its predictive power about
Are structures(sheets or filaments of vorticitya vital intermittency in the GOY model. We shall assume that tur-
ingredient of intermittency in three-dimensiori@D) incom-  bulent fluctuations on the shells downstream of the pulse,
pressible turbulence? To date, this important question reie., small scales, act on the coherent part of the flow as a
mains oper{1], and an answer starting from first principle, random, white-in-time, Gaussian forcing and we ask whether
i.e., from a controlled approximation to the Navier-Stokesthe inviscid stochastic extension of the GOY model obtained
equations, seems over the horizon. The new understanding of this way is able to reproduce the statistics of strong devia-
the anomalous scaling in the Kraichnan’s model of passivéions of the full turbulent system in the inertial range. There
advection[2], based on the identification of zero modes inis a priori quite a lot of freedom in the parametrization of the
the homogeneous Hopf equations for equal-time correlator$orcing. Therefore, in order to keep things as simple as pos-
has in particular strengthened the belief that field-theoreticadible, we bind ourselves to use a single adjustable parameter
methods would eventually be able to capture the full statis{hereafter noted’), which measures the level of noise. We
tics of turbulent flows without an explicit account of struc- consider the semiclassical limit<1 of these systems and
tures. study the statistics of singular structures appearing in this
Interestingly enough, the relative interplay between co+egime[6].
herent ordered structures and incoherent turbulent fluctua- Semiclassicalor instanton techniques are well suited to
tions turns out to be a subtle matter already in the restrictedapture large and rare excursions of fluctuating fiEfdsAs
framework of the so-called shell models of turbulefi8k It such, they have gained recently a renewal of interest in the
was noticed very soof#] that elementary bricks of intermit- field of turbulence[8] and have already led to noteworthy
tency in those deterministic one-dimensioitaD) cascade results in the context of Burger's turbulent®,10], and of
models could be pulses or bursts of activity growing in anthe Kraichnan's model of passive scalar advecfibh,12.
almost self-similar way as they move from large to smallOne usually starts from a path-integral representation of
scales. However, genuine dynamically stable self-similar sohigh-order structure functions and uses a saddle-point ap-
lutions of the equations of motion in the inertial range dis-proximation to determine the coupled field-force configura-
play a unique scaling exponeftb be denoted below ag),  tions contributing mostly to those quantities. The nature of
provided they are localized ik space(which, in the shell the statistical object to be computed imposes precise bound-
model approach, reduces to a discrete set of wave numbesasy conditions on the physical field and the random force
k,=2(""1) where the shell inder goes from 1 tox). Fur-  (respectively at large and small scales, where the cascade
thermore, the exponerz,, giving the logarithmic slope of processes start and endnstantons, which in the inertial
the velocity gradient spectrum left in the trail of the pulse,range often reduce to a self-similar collapse along some spa-
happens to be rather close to the Kolmogorov value 243 ( tial dimensions, are eventually selected by a delicate match-
=0.72) in the case of the Gledzer-Okhitani-Yama&@aDY) ing procedure at the two boundaries. In shell models we are
model, in the range of parameters where it reproduces at bedealing with an intrinsically discrete lattice of logarithmic
the multiscaling properties of real turbulent flows. scales. As a consequence, the analytic computation of instan-
In Ref. [5] the role played by the interaction of pulses tons is completely out of reach in the inertial range, not to
with the rest of the flow in producing more singular eventsmention the matching on both sides of the cascade. To cir-
was unraveled, and a two-fluid picture was introducedcumvent this difficulty, we shall focus on the probability
where coherent structures form in and propagate into a feadistribution function(pdf) of scaling exponents after cas-
tureless random background. Our goal in this paper is t@ade stepsP,(z), and argue that, in the semiclassical limit
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I'<1, this pdf builds up from the neighborhood of a single
self-similar instantor(of scaling exponent) that dynamic a0~ bl (2.2
stability considerations will help us to construct numer-

ically. In order to get nontrivial physics, it turns out to be \here the infinite-dimensional vectoris built up from the
necessary to perform the semiclassical expansion of .q \yhile thenth component of the nonlinear kerng[b]

_ I|m,Hw(1_/n)In P.(2 (the_ rate of rare_factlon qf singularities is given by the right-hand side of E€.1). It is worth noting

of the scallqg expone.nzt in the muItn‘raptaI picturg up to 4t this point that* -b=2;°:0|bn|2 plays dimensionally the
next to leading order in powers @i. This can be aCh'EVEd. role of enstrophy in real flow and that the inverse square root

via a summation over quadratic fiuctuations arql_Jnd the NGF this guantity sets the order of magnitude of the smallest
stantons, once the proper set of boundary conditions for thffme scale on the shell lattice

corresponding trajectorie_s in cpnfiguration space hgs been Since quadratic nonlinearities lead generically to finite
defined. We shall show in detail how to carry out this PO time singularities, it is very useful to introduce a desingular-

gram gnd end up Wit.h a prediction 1B1(2) Ienqling itse_lf to izing time variabler related to the physical time by the
a straight confrontation with the pdf of effective scaling ex- differential law
ponents of coherents events that can be extracted from simu-

lations of the GOY model at very high Reynolds numbers. -

Although our interest lies primarily in gaining a better un- —=(b*-b)12 (2.3
derstanding of intermittency in the framework of shell mod- dt
els of turbulence, the emphasis will be put in this paper o
the technical aspects of the method that we had to develo

for computing instantons. We believe that this method is

his turns Eq(2.2) into

general enough to find applications in other contexts or db _ N[b] 2.4
physical problems, like for instance the motion of complex dr (b*-b)l’z' ’
objects or excitations on one-dimensiofiHD) lattices in the

presence of a comoving random environment. where both sides of the equation have the same scaling di-

The paper is organized as follows. In Sec. Il we define thenension in the field, which shows that an infinite “time”
stochastic extensions of the GOY model that we shall StUdMs now required to form a Singu|arity by tra\/e“ng across the

In Sec. Ill the equations of motion for instantons will be whole shell axis.

derived using the well-known Martin-Siggia-Rose path-  From previous work13], we know that every initial con-
integral representation of probability distribution functions dition of finite enstrophy, when evolving under dynamics
for stochastic dynamical systems. Section IV is devoted 192 4), eventually organizes itself in a solitonlike pulse, mov-
the computation of self-similar extremal trajectories, with thejng from large to small scales at a constant speed with an
theoretical considerations underlying the solution explaine@&xponential growth of its amplitude. The asymptotic state is
in Sec. IV A and its practical implementing, together with unique, up to trivial phase symmetries of the GOY model
the results, exposed in Sec. IV B. The important effect of14], time translations, or multiplicative rescaling of the field
quadratic fluctuations and the rather heavy formal work bet which all leave the equation of motid@.4) invariant. We
hind their computation are discussed in Sec. V. The comparimay restrict our attention without loss of generality to the
son of the results issuing from the instanton approach witltase where the phase pattern along the shell axis does not
numerical data on the statistics of coherent structures in thsreak into a three-sublattice structure. The asymptotic Flo-

genuine GOY model is given in Sec. VI. We conclude in quet state, to be noted hencefolff(7), is then purely real
Sec. VII, in particular as to the relevance of a two-fluid de-and such that

scription of intermittency in shell models of turbulence.
b4 1(7+ To) =exp(AgTo)b(7). 2.5

II. DEFINITION OF THE STOCHASTIC DYNAMICAL

The periodT, is the “time” needed for the center of the
SYSTEM

pulse to go from shelh to shelln+1, while the(positive
Equations of motion for the GOY model in the inertial Lyapunov exponenf, controls its growth. Both quantities
range read To and Ay, are dynamically selected in a unique way. The
scaling exponent, associated with the puldéixing in par-
ticular the logarithmic slope of the spectrum left in its trail
db, B can be extracted from the identi“=exp@A,Ty). Its value
W=Q2(1—6)b:,2b:,1+eb:,lb:H—Q ?b.1b7 2, turns out to be 0.72 in the case of the GOY model for the
(2.1)  choice of parameters stated before.
We turn now to the stochastic models that we are inter-
ested in solving by the instanton method. Their physical mo-
where the complex variable,=k,u, should be understood tivation has been explained in Rd5]: we assume that
as the Fourier component of the gradient velocity field afpulses parametrize adequately singuland temporally co-
wave numbek,= Q" and the integen runs from 0 to+ce. herenj structures in shell models but that the deterministic
Throughout this paper, usual values of parameter€.5  dynamics(2.2) should be enlarged towards a stochastic one,
andQ=2 will be assumed. It is convenient to cast E2.1) in order to describe the interaction of a given pulse with
in a vectorial form incoherent fluctuations produced by the relaxation of the
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trails left by its predecessors. We are therefore led to conF<1, the probability density of developing an effective
sider the following extension of the original inviscid GOY growth exponentz after n>1 cascade steps will take the

model: form
db So(z
o = NIbl+ JT(b*-b)¥B[C] 7, (2.6) Pn(z)~ﬁexp{—n($+sl(z)> , (2.9
where  is a Gaussian noises-correlated in time and shell wheresy(z) is the action per unit cascade step of the self-
index, whose correlations read similar extremalsolution of scaling exponentof optimal
bare Gaussian weigltor instanton, ands;(z) measures, to
(7 () 7 (8)) = B S(E— ). 2.7 the lowest order inl’, how the basin of attraction of the

instanton in phase space evolves with the number of cascade
steps. Note that the argument of the exponential in(E®),
The various factors coming in front af in Eq. (2.6) have  —{[s,(2)/T']+5,(2)}, is nothing but the Crammefunction
the following meaning: the numbel fixes the relative introduced in the theory of large deviations, which governs
strength of incoherent fluctuations with respect to coherenthe rate of rarefaction of singularities in the multifractal pic-
ones and we shall be interested in the semiclassical limit ofure [15]. We will show in this paper how to compute in a
small I' amenable to semianalytic treatment. As will be clean way both quantities,(z) ands;(z). Before doing this,
clearer in a while, the overall scale factdr*(- b)** is there  we must carefully handle problems related to the time dis-
to keep noise relevant all along the cascade, thereby presereretization of the stochastic equati¢h6) since a consistent
ing scale invariance. Finally the matf3{ C], of zero scaling treatment of them is necessary to get the right expression of
dimension in the field since it depends only on the unit the first correctiors;(z). We shall adopt the view that the
vectorC=b/+/(b* -b), may be used either to introduce spa- initial stochastic equatiori2.6) is to be understood in the
tial correlations of noisé¢along the shell axjsor to localize  Stratonovich sensgl6]. However, in the path-integral for-
its action with respect to the instantaneous position of thenulation of stochastic dynamical systems that we shall
pulse. Although the formalism to be developed in this papeheavily use in the following, it is much simpler to work with
can deal with the most general situation, we restricted ourthe Ito prescription which, in the limit of small time steps,
selves in practical investigations to diagonal matriBe€], = amounts integrating E¢(2.6) within a basic Euler scheme
just playing with the degree of localization of noise. Resultswith all b-dependent quantities in the right-hand sides)
will be presented for three rather emblematic choice®:0f estimated at the prepoint. When switching to the Ito discreti-
(i) B,n=1, which describes a completely delocalized noise;zation recipe, the stochastic equation has to be changed into
(i) Bopn=C}_,Cr_1, which keeps some flavor of the origi-
nal GOY dynamics and makes noise active just at the leading db
edge of the pulse; and finall§iii) B,,=|Cpn_s|?+|Cn_4/|% ot = Ne[b]+ JI'(b-b)%*B[C]7y, (2.9
which removes the action of noise further away from the
center of the pulse. We must emphasize that these particular
choices were not dictated by rigorous considerations on thevhere the new kernél-[ b] differs from N[ b] by the addi-
underlying dynamics of the GOY model, but rather used tation of the so-called Ito drift term. We give, for the sake of
scan the variety of behaviors which may be expected froncompleteness, the resulting expression ofritiecomponent
such stochastic dynamical systems. It should be noted thaf N,
the structure of the matriB is not constrained by any con-
servation law, since the coherent part of the flow does not
form a closed system anymore, even in the inertial range, ilN ,[b]=N,[b]+
our two-fluid description. Finally, to simplify the following
analysis, we are going to restrict the fieldsand » in Egs.
(2.6) and(2.7) to being real-valued vectors and to neglect theAt this point, we may write down the discrete analog of
effect of imaginary fluctuations. This is certainly not a seri-Eq. (2.3 as Ar,=7,,,— 7,=(b;-b)Y(t; . 1—t;) (wherei
ous restriction as for the instantons themselves, which arg the time index and redefine the noise asg— &
expected to be, like the self-similar deterministic solution:\/F(bi.bi)—lf‘lm. This leads to the following stochastic

described above, purely real, up to trivial phase symmetriegxtension of Eq(2.4) which will be the starting point of our
of the GOY model. It can also be remarked that the modeformal analysis,

(i) (which will be found later on to give the more convincing
results does not require a complex noise, since the phase b N[b]
degrees of freedom have already been incorporated in the r +(b-b)¥B[C]£, 2.11)

1% / y
317 [(b-D)¥Baf](b-D)*By;. (2.10

definition of the matrixB in that case. dr (b-b)?
While the deterministic dynamic&2.2) selects a single

self-similar solution exploding in finite time with scaling ex- .

ponentz,, the presence of noise in E.6) allows for a with

continuum of scaling exponents, even in the manifold of nor-

malizable fields. In the small noiséor semiclassicallimit (En(D)én(T))=T Sy (7= 7"). (2.12
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IIl. EXTREMAL TRAJECTORIES FROM
PATH-INTEGRAL FORMULATION
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_aNe[b] Ni[bjeb
M= (b-b)]'/z (b~b)3/2 '

Statistics of classical fields in the presence of random

forces can be examined with the help of field theoretical
techniques formulated ifl7]. In particular, the probability

to go from pointb;, at time 7=0 to pointb; at time 7; may
be written as a path integral

P(bin,O;bf,rf)zf DbDp exp— 9 b,p], (3.2

whereS[ b,p] is an effective action to be defined belgwan
auxiliary field conjugated to the physical obeand DbDp
stands for

dpo
(2md =1 (2w

(3.2

In the last equation, the time intervaj was divided intoN
subintervals of lengthAr=7;/N (with b;;=by and by
=hy) and the number of shells was set to a finite valu

order to give a clear meaning to the measure. For the prob-

lem of interest(2.11), the effective actiort takes the form

N[b;] )
(b;-b;)*2

i=N—-1

Sb.pl= >

, ipi'(bi+1_bi_AT
i=0

+ g(bi'bi)pi'B[bi]tB[bi]piv (3.3
or, in the continuum limit
N db  Np[b]
S[b,p]—jo dTIp(E—(b—b)l’z)
+ g(b-b)p- B[b]'B[b]p. (3.9

The last term in Eq(3.4), quadratic inp, appears as a result

of averaging over the Gaussian no&ewhile the first one,

As usual, Egs(3.5 and(3.6) inherit a canonical structure

do oM X
dr 960’ (8.7
do oM -
where the Hamiltoniart reads
_ONdbL L b oBBe 3.9
TG 5(b-b)(6-B'BO). (3.9

SinceH is not explicitly time dependent, we conclude that
its value, to be called the pseudoenergy in the sequel, is
conserved along any extremal trajectory. The ac&pb, 6]

may be rewritten in terms df{ as

7 db
S[b,0]:f dr| 0-——H/|, (3.10

0 dr
from which it is seen that the further requirement that the
trajectory be extremal with respect to time reparametrization
leads to the condition of vanishing pseudoenekty 0. Not-
ing that each term of{ in Eq. (3.9 has the same scaling
dimension inb and @ (either 1 or 2, one finds that

oH oH

d
d_T(b.g)zg.%_b.Ezo,

(3.11

which shows that the overldp- 8 between the physical and
auxiliary fields is also conserved, together wiih) along an
extremal trajectory. This property reflects the scaling invari-
ance of the stochastic cascade processes we have in mind.
We should at this point insist on the fact that, in contrast to
instantons in the framework of equilibrium statistical me-
chanics or quantum mechanics, equations for extremal tra-

linear in p, would still be there in the absence of noise as gectories in stochastic dynamical systems describe the real
formal way of enforcing the deterministic equation of motion motion of the physical field in a particular “optimal” real-
of b. S[b,p] will be referred to in the following as the jzation of the noise. The comparison of E¢®.11) and(3.5

Martin-Siggia-RoséMSR) action.
Rescaling the auxiliary fielgp asp’/I" puts an overall

large factor IF" in front of the effective action and opens the
way to a saddle-point approximation to the path integral
(3.1). Extremization of the action with respect to the configu-

rations of both field® andp between times O and;, for

shows indeed that the following relation holds betwegn
and 6.
£=(b-b)"*'Bo. (3.12

Like their deterministic parer(2.4), the equations of mo-

fixed endpoints, leads in a straightforward way to the follow-tion (3.5 and(3.6) sustain formally traveling-wave-like so-
ing set of coupled equations defining extremal trajectories: lutions, such that

db_ Nrlbl oy byBiBe 3
o _ 01 b-b)#-B'BO 3.6
g, =~ ‘MO 53] (b-b)6-B'BY). (3.6
In the above equation, we spt=—i6# and M is the Jaco-

bian matrix of the kerneN[b]/(b-b)¥2

by 1(7+T)=expATh,(7), (3.13

(3.19

whose scaling exponet=AT/InQ is expected to be now
related to the overlap.,=b- @ (with z=z, for ©,=0, in the
absence of noige However, there is little hope of finding
these solutions by a direct forward in time integration of Egs.
(3.5 and(3.6), as could be done successfully for EZj4).

Ohs1(T+T)=exp—ATHO,(7),
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This is because the auxiliary fieldintrinsically propagates part of theo;’s. Arranging the eigendirectior®;, in order
“backward” in time, as is clear from the discretized version of decreasing Re;, we are therefore led to identify’(7)

of Eq. (3.6) [deduced from the extremization of E.3)]. I with W, (7). In the case of zero noise where we recover the
the present problem, we have observed numerically thajeterministic solution of Sec. llwith £2=0 in both Egs.
regular Floquet states emerge as dynamical attractors of EG®.5) and (4.1)], the time derivativedb®dr is also the solu-

(3.5 and(3.6) only for rather high values oft, (otherwise  tion of Eq. (4.1) with the same Lyapunov exponent b
the system evolves in a chaotic manndihey form a branch  =A (=A, in this casg In this limit we would naturally

of solutions definitely distinct from the one to be obtained indefinew,,(7) asdb%dr. This property is lost in the more
the next section and correspond presumably to local maXierneraI situation of a nonvanishing noise, becaiisis not
of the action rather than the local minima of interest to Us. time invariant. What remains true, however, is the fact that
b% anddb®dr still span the set of “coherent” fluctuations
IV. AN ITERATIVE METHOD FOR COMPUTING which do not affect the shape of the pulse but modify its
SELF-SIMILAR INSTANTONS height and position.
By turning now our attention to the linear dynamics dual
to Eq. (4.1) we shall come close to E@3.6). Let us indeed
The previous considerations suggest that E§b) and  consider the equation of motion
(3.6) should not be treated on the same footing. The careful
examination of physical properties that instantons should de .
possess will give us keys for computing them. Assume for a g ke 4.9
while that a solution has been found, obeying Egsl3 and

(3.14. We note the corresponding configurationhdnd€  \yhere in order to limit the proliferation of symbols, we keep

0 . . . . .
asb® and £. The linearization of the equation of motion {he same notatiod for the new auxiliary field, although it is
(3.5 at fixed noise leads to the following evolution of fluc- ony in particular circumstances, to be clarified below, re-

A. Theory

tuationséb of b aroundb®: lated to the® of Egs.(3.5) and(3.6). From Eq.(4.1) we get
d
—Sh= = . .p) 12 de
§;00=LD=M8b+(80-3)[(b-b)*BE|po. (4.1 O MO~ a4 (b-)%0-BE] . @5

The periodicity properties of the linear operatbensure that
the fluctuations ob may be decomposed on a complete se
of eigendirectionsW;,(7) evolving according to Eq(4.1)
and such that

{The dual dynamics enables one to construct a basis of left
eigenvectordl; (1) (with 1<i=<d) satisfying

Wy (r+T)=e 21T, Wy (), (4.6)
Wi (7+T)=e"" T, Wi (7), (4.2 . . . :

as well as the following orthogonality conditions with the
whereT ; denotes translation by one unit in the right direc- members of the first basis,
tion along the shell lattice. In practice we shall have to work
with a finite number of shellsl and, in order to get rid of Wi (7)- W (7)= 3, 4.7
boundary effects, it will be necessary to fully periodize the
shell lattice: the index then runs between 1 ardland the  at every time. The vector®; (0) are determined by diago-
translation operator is easy to represent as a matrix. Fopalizing the adjoint Floquet operator
mally, the W;,’s can be determined at time=0 by diago-

nalizing the Floquet operator: tUT—e_)xprtﬁdrT . 4.8
- L .
0

T

UT_T_lepro Ldr, “.3 and enforcing the normalization conditidd.6) at time 7

_ =0(6<)|@ is now an antichronologically time-ordered prod-

where expis a chronologically time-ordered produgtitial uct. We may note at this point that the first left eigenvector

time on the right One observes thdi® satisfies Eq(4.2) W, is, in the generic case of nonzero noise, the only one to

with a time-averaged Lyapunov exponent A. display the scaling behavior anticipated fét according to
We claim now that every initial conditiob(0) evolving  Eq. (3.14), since its Lyapunov exponent equalsr; = —A.

in the configuration of nois&, should be attracted towards We conclude that the auxiliary equatidB.6) in the re-

the instantonic trajectory. If it were not true, some perturba-stricted manifold of self-similar solutions is tantamount to

tions would be able to grow in the comoving frame of thethe relation

pulse, thereby generating scaling exponents larger then

no cost in the action, in contradiction with the hypothesis F(r)=p, Wy (1), 4.9

that the optimal realization of a singularity of exponeimas

been found. This strong criterion of dynamic stability is an-where the multiplicative constapt; is nothing but the over-

other way of stating that the Cramiunction should be in- lap 6°-b°[ = u, Wy, (7) - W1,(7) = ], Which was shown be-

sensitive to the details of the production of pulses in thefore to be indeed a conserved quantity. This claim is further

forcing range. It implies thah is an upper bound for the real confirmed by rewriting the original equatidB.6) as
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de

1
t —(fH-Bt —(b- . t
dr M6—-(6-B'BOb—(b-b)6o 2[(abB) B

+B(d,'B)]0

‘tM6O-(0-B'BO)b—(b-b)o-(4,B) 'Bé.
Putting back 0 superscripts and reintroducifidoy using Eq.
(3.12, we arrive at

dé®

dr

bO
(bO' b0)1/2
—(b%-b%)29,(6°-BE),

‘MEP— (6 -BE)

(4.10

which shows tha#® obeys the dual dynamics defined by Eq.
(4.4).

Having interpreted EQq.3.6) as a condition of self-
consistency for the conjugate momentéexpressed by Eq.
(4.9), we could contemplate the following Newton-like pro-

cedure for catching numerically self-similar instantons. First" "

make a guess fo£ in the form of a traveling waveE"(r
+T)=7,,&"(7)], integrate Eq(3.6) forward in time in or-
der to determine the asymptotic traveling state reachel by

in the prescribed configuration of the noise. Then compute,g

W,, from the diagonalization ofU; [or from running Eq.

(4.4) backward in time in order to let emerge the eigendirec-

tion of lowest growth ratg employ Eq.(4.9) for producing a
new configuration o (and thereby&), and iterate this loop
many times at a fixed value of the overlag until conver-
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#0, a condition always found to be satisfied in pradtic®
that®,, has a unit overlap witld,, , while being orthogonal
to all other right eigenvectord;, with i #2 (which will be
noted®;, from now on. One then considers the modified
linear dynamics:

déb .
5, —Ldb=Lab+ (b°- b)Y ®,,- 6b)B

d¢°

dr’

(4.11

It is easily checked thab,, =db®% dr obeys Eq(4.11), since
Eq. (3.5 yields upon time derivation

d¢°

dr

@,

dr

=LD,y +(b°-bO)VB—=Ld,, . (4.12

It is also trivially seen that the other vectoly, = W,, for i
#2 keep the same evolution under E4.11) as under Eq.
(4.2). The dual dynamics now reads

d¢°
0-B

T

—L6=—1£6—(b°-b%)?2 >q>2,, (4.13
It leads to a new family of left eigenvecto#s, , dual to the
direct basis, whose second membky, has been defined

above and the others relate to their original counterpitits

D) =T — (V) Py )Py . (4.14

Although the ®;’s were introduced as a rather formal
trick, it should be emphasized thdy;; and ®, have an

gence is achieved. However, two major difficulties call for appealing physical meaning. Parametrizing a perturbed tra-
an improvement of the method: they both have to do with thgectory forb asb=e?" (D[ 7+ §7(7)]+ db;,., where the
stability of the trajectory upon time reparametrization. First“incoherent” part of fluctuationséb;,. is bound to be a lin-

we do not know the sped@r the inverse period 1) of the
final traveling wave that must carry togetheand & There-

ear superposition of the less dangerous maebgsfor i=3,
one has indeed, to linear order i,

fore, when performing the first step of the iterative loop, we

must allow continuous time reparametrization of our Ansatz dInb=®,;- éb, (4.19
for the noise in order to fine tune the speeds of the two pulses
formed byb and £ and let both terms on the right hand-side OoT=®y- ob. (4.19

of Eq. (3.5 always be relevant. It will be explained in Sec.

IV B how this goal can be achieved in practice. The seconc]rhese two relations will be useful in the computation of

difficulty is much more serious than the preceding one and "ghua;dt;atlc fl_uct'[gatlons'[ iﬁ be plrtgj_ented_ln Slefcl: \{ 'I;heyf;hlgw
the way of getting around it resides perhaps the most trick)y at by projecting out the muitidimensional fluctuation fie

part of this work. The point is that traveling-wave solutions db onto the two vectorsy and®,, one has access to the
to Eqgs.(3.5 and (3.6) may perfectly have a nonzero pseu- most relevant part of it affecting, respectively, the amplitude

doenergy™, while we are looking for the particular ones and the time delay of the pulse constituting the instanton. In

with H=0. We shall be able to fulfill asymptotically the two ']Eern;gtof@tlr,] and.t(ﬁz;'h' the s_elf-contsisftency Cond(ijtio(mé?
conditionsb- #= u, and H=0, if and only if our iterative or ¢ logetner wi € requirement of zero pseudoeneigy

guess for@ is constructed within a two-dimensional spacetake the following form:
rather than a unidimensional one as in the naive proposal

()=, ®y(7)+ Dy (1), 4.1
made above. For this purpose, we are going to embed the (7)=paPu(1)+ po(7) P2 (7) .17
linearized dynamicg$4.1) into a new one which admits the where
time translation modalb®dr as a true eigenstate of the
same growth factof ash®, restoring thereby the symmetries 1 o L
present in the absence of noise. We shall do that in the most poT)= 500' B 500—550' &. (4.18

economical way, from both formal and numerical points of
view, by substitutingb,, =db’%dr to ¥,, , i.e., the eigendi-
rection along which the fluctuations of aroundb® are the
less stable.

The left eigenvectorW,, is first rescaled as®d,,
=W, /W, - P, (which makes sense as long ds, .D,,

Since from Eq.(4.17), u,(7)=®,, .6, and from the equa-
tion of motion (3.6), ®,,- =H+ 3£ &, the relation
(4.18) is just a way of restating{=0. That Eq.(4.9) implies
Eq. (4.17) results from the general link betwedn,; andd,
[see Eq.(4.14)]. The reverse is true only under the supple-
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mentary condition of constaritl or u,(7)=C'+ 3£ &, 08 ‘
which is guaranteed by E@4.18). It is proven by checking os} o C=0/®, )" . /
that in that case’(7), as given by Eq(4.17), obeys, as it . [ - - @uf@®)" 1
should, Eq.(4.4), '
0.2 _
d d) —~ d/"LZ 0.0 ¢ - o e e T
.t + —=
dr £0O dr (DZI 0.2 : y
0 10 20 30
d§0 d,u 2.0
= — tﬁd)_(bo,bo)ﬂZ( d)Bd_ (I)2|+d_7_2(1)2| 15 L **-*’(D”(EI)"-!P")‘/Z 4
WE @, @,0,)" . 1
1 ]
e+ o w0 ], |
H L L T
=L+ . ‘ ‘ -
0 10 20 30
shell index n
The great advantage of Eqgl.17) and Eq.(4.18 with FIG. 1. On the uppeflower) picture we plot the configurations

respect ta4.9) is that this couple of equations lends itself to at a given instant of the rigtiteft) eigenmodes in the subspace of
iterative procedures leading inexorably to a fixed point ofmaximum Lyapunov exponed, around the deterministic solution.
zero pseudoenergy, a task seemingly out of reach before.

There is some unavoidable arbitrariness in the construction In order to allow time reparametrization of the trajectory,
proposed here, concerning in particular the definition of theve first get an estimate of the instantaneous position of the
vector®,, , about which the reader may feel a little uncom- pulse along the shell axis in our trial configuration by com-
fortable. We suspect that these unwanted features do not atuting the following quantity:

fect the final results since the original equations to be solved
as well as the corresponding conserved quantities all have a _ A
clear mathematical definition whet;, and ®,, merge to- n"(7)= >, n[d][CI(7)]2. (4.2
gether intoWwy, . -0

d-1

o . The notationn[d] recalls that, due to cyclic boundary con-
B. Practical implementing and results ditions, the shell index is now only defined moduld and

The action densitg,(z) could be computed successfully that in practice a continuous determination of this integer
for the three stochastic models defined in Sec. Il using théhould be adopted close to the center of the pulse which
iterative scheme outlined before. The shell lattice was firsgeontributes mostly to the right-hand side of E4.21). One
mapped onto a circle ofl sites, withd typically ranging has by constructiom(7+T'")=n""(7)+1(mod d). Hav-
between 20 and 30. Finite size effects turn out to be coming recordech™(7) and&"(7) during a whole period™, we
pletely negligible at such lengths of the chain, due to théntegrate forward in time the nonlinear evolution equation
strongly localized structure of the instantons. To start thgor C deduced from Eq(2.11) by projecting out the longi-
computation, we make a guess for both the unit figld)  tudinal part of its right-hand side:
=b(7)/(b-b)Y47) and the noise(r) called henceforth
C'"(7) and £"(7). They are such that

dC .
. , . 4 _ 4 E:{N[C](T)+B[C](T)fn(T')h- (4.22
Ch(r+TM=C(7), N (r+TM=E(7), (4.19

Note that the subindeX’ disappeared from the nonlinear
kernel Ny because the Ito-drift term being linear Ihdoes
, _ not matter in the computation of the action to leading order
Chia(m)=Cy'(7), éng(m)=&N(r). (420  (we shall see in the next section how to handle it to next to
leading ordex. The most salient feature of E(.22) is that
Furthermore, the noise is normalized in such a way that th&e noise configuration is evaluated in relation not to the time
overlapb- #=C-B~Y[C]£ takes on a prescribed valye, 7 but rather to the actual instantaneous position of the pulse.
held as a control parameter during all the steps of the comlhis means that the time’(7) is automatically delayed or
putation. A possible and convenient choice would be for in-2dvanced with respect tg according to the recipe
stanceC'"(7) =C%(7), whereC°(7) is the deterministic so- _ _
lution of the scaling exponemzo, and £"(7)=pu(b° n"(7")=n(r) or ' =MM"Yn(7n]. (4.23
-b%)¥2B[C1 @Y (), where ®9,(7) is the left eigenvector
dual tob®(7), i.e., in the absence of noise. Figure 1 showsAfter integrating Eq.(4.22) long enough, a new traveling
how both vectorsb?, and @9, look like at a given time. wave stateC°UY(7), V()= £"[ 7' (7)] will usually emerge
Their shapes will in fact evolve little as we let the scaling of period T°“!, possibly different fromr'", and an averaged
exponentz depart fromz,. growth factor

and
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1.0
1 4 Tout
out_ -I—outf T (N[Cout] + B[Cout]gout)_coutd T ¢ B,=1 ' y
T 0.8 x Bnn=C n-1 2C n-2 2 * / ° ,
(4'24) * Bnn=|cn41I + |Cn—5' *
The vectorsWy(7), W, (7) are then identified as the two
eigenvectors ofUout [defined in(4.8)] of the smallestreal 06+ </ 1
negativeé Lyapunov coefficient and the corresponding ST /o
@, (7),Py(7) constructed as linear combinations of them 04 | N ]
obeying for all times the following relations: o
dpeut 02 b ¥ jX/x ° 1
U=, ——— = ‘
P, b D, . a- 1, %&’?ﬁx
. dbout 0'00,7 s 018 019 1.0
&, -bV'=P, . ——=0. z
21°b 1 "4, 0

_ FIG. 2. Evolution of the normalized action per unit cascade step
Finally, the trial noise configuration is renewed &88(7)  sy(2)/T" as a function of the effective scaling exponertor the

= (bOUt. poUuY V2B COUY @™ with three models studied in this paper. As a guide for the eyes we show
) the paraboldsolid line) “tangent” to the curves at the deterministic
0" (7)= 1@ (7) + po(7) Py (1), (4.25 minimum z,=0.72.

where u,(7) is determined upon imposing the condition of tively, to models(i), (i), and(iii), show the normalized co-
zero pseudoenergy on the trial solutiof"(7),b°"Y(7)] herent fieldC and the random forcBé£ at increasing values
1 of z (0.75, 0.85, and 0.95In all cases the random force is
in 0Ut]4 T (Rout pouty gin outy t outy gin _ found to be negative at the leading edge of the pulse, in
o7 N[C*H]+ Z(b %) 07 B[C*H]B[C*]07=0. agreement with the physical picture advocatefbih growth
(4.26 can be enhanced only by frustrating the energy transfer pro-
o cesses. For modéii ), the coherent field itself gets negative
After settingb™(7) =b°(7), we are ready to repeat the op- 4t the forefront: noise in that case just helps to prepare the
erations described above as many times as needed untilsgstem in an initial condition consisting of a pulse and a
fixed point of the transformatiofsuch thath®*(7)=b"(7)  negative well in front of it, which then collide. An interesting
and £"(7)=§°"Y(7)] is reached, which solves the problem. ypshot of our computations is that models li® or (iii)
The good stability properties of the algorithm, as well as itsinyolving only a local coupling betweeln and £ escape the
iterative character, authorize a rather unsophisticated hagjisaster met in the framework of modg), namely a cross-
dling of issues raised by the time discretization. As requirechyer toward an asymptotic linear growth sf(z) with z,
by the Ito convention, the equation of moti¢d.29 was  gjready perceptible in Fig. 2. Such a behavior forbids the
integrated using a first-order Euler scheme with a time stegyistence of velocity moments at arbitrary orders and is,

A7=T"/N about 350 times smaller than the period. Thethys, clearly undesirable. It turns out that the whole shape of
time 7/ was approximated as the multiple &fr making the

relation(4.23 best satisfied. Similarly no higher-order inter- 0.8 .
polation scheme was devised for estimating with accuracy
the output periodr®U it was again simply approximated as
the multiple of A 7 making periodicity condition$4.19 best 0.60 :
satisfied for the output. However, the time stAp- was =
changed at each iteration of the loop so to maintain the time
resolution N constant. The efficiency of the method was 040
greatly improved when seeking solutions of exponerfiar
from z, by increasingz gradually(through an increase of the
control parametejt,) using as a first guess solutions of a %20
lower but close scaling exponezit. In this way convergence
toward satisfactory self-similar solution®f exponentz
varying by less than I0° under iteration and pseudoenergy
H=10"°) was attained in no more than 20 iterations.

We turn now to the presentation of our results. Figure 2
shows the action densitsyp(z) for the three modelsi), (ii),
and (i) defined in Sec. Il. Values ofF were adjusted in n - shell index

order to provide the same curvaturesg{z)/I' at the bottom FIG. 3. Configurations of the normalized coherent fi€icand
of the curves, reached evidently ztz,. We see that the the random forceB £ for three instantons of exponents equalzto
variations of the zeroth-order action get sharper onzhe =0.75,0.85,0.95, obtained with the mod#gl (according to the no-
>z, side(the only one displayed in Fig,)2as one goes from menclature defined in the téxtNote that theC field is only slightly
model(i) to model(iii ). Figures 3, 4, and 5, referring, respec- deformed ag increases.

0.00 ¢

0.20 L !

(=}
—
o
n
[=)

30
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' the density of probability?,(z), we have to expand the MSR
action up to quadratic order in fluctuatiod® around the

06 —— C, 1 extremal trajectonp®(7) of scaling exponert and then sum
o B & over them in a way that will be explained below. Since typi-
o= cal fluctuating paths are not differentiable but rather behave
04 1 as Wiener paths with derivatives of the orderwe shall
stick to time-discretized expressions in all the following ma-
02 . nipulations of the path integral. For the sake of clarity, the
superscript O referring to the extremal trajectory in the pre-
o0 | vious section Sec. IV will be taken away, wherdgasé will

be short-hand notations fob%(r,=iA7),6°(7,=i A7),
‘ where §7 is the (small) time step used in the discretization.
0.2 F L . We start from Eq(3.1) and the representatid.3) of the
effective actiong b,p], expand it to quadratic order in both
fluctuationsép and éb, and then integrate out the fluctua-

0 10 20 30 tions of the auxiliary field. To begin, the time; during

n : shellindex which we let the system evolve will be equal to the tinie

FIG. 4. Same as in Fig. 3 but for the modi). Note the more needed by the ideal instanton to perfonmsteps along the
pronounced deformation & upon increasing, with respect to the ~ Shell axis. The ideal initial and final configuratiobg = by
previous case. and bs=by describe then a pulse centered successively

around the shells of index 0 and To quadratic order in

so(z) for model (i) can be pretty well understood from an deviations from the extremal trajectory, the probability of
adiabatic approximation, which is carried out in the Appen-joining the perturbed endpoints;,=by+ dby and b;=by
dix A, where solutions of arbitrary scaling exponents are+ &by in the time 7; take the following expression:
constructed using adequate time reparametrizations and dila-
tions of the deterministic solution of scaling exponegt  P(Do+ 80o,0:by+ dby, 7¢)
The validity of this approximation for the mod@) is some-
how obvious from Fig. 3, where it can be checked that in- :e—ﬂSo(Z)/FJ Débexp — 89 8b]— 82 db]), (5.2
stantons keep indeed almost the same shape, even for quite
sizeable variations df. Its failure in modeldii) and (iii) is ) o )
probably due to too strong deformations of the solutions as Where the measure of integration is defined as
increases, again suggested by Figs. 4 and 5. The full nonlin-

ear treatment of the problem proposed in this paper was, 1 dni2 1 1
however, necessary to reach this quite fortunate conclusion. Déb= ( 2ml Ar) (bg- )92 |detBy]
V. THE EFFECT OF QUADRATIC FLUCTUATIONS " N-1 déb, 5.2
A. Formal considerations =1 | (b;-by)%?|detB;| ]’ '

In order to compute the first ordén I') correction to the _ o
action per unit cascade stgp (z) in the expressiof2.8)] of  the linear variationsS reduces to the boundary term

T T 1
07+ . 5S[5b]zf{0N—1‘5bN_00'500}, (5.3
05 L _ and the quadratic one reads
Ar Nt B
03 | 1 89 éb]= T & [(bi'bi)_llzBi !
i ob; 11— O 2
ot r X(%_-Aiﬁoi +5bi-Vi5bi.
01t . (5.9
The drift and potential terms in Eq5.4) are found to be
03 ‘ 10 20 30 given by the following relations:

n : shell index

-6b- = M. éb: . .b)B: B
FIG. 5. Same as in Fig. 3 but for the modgi) and only A; 0= M; 0y + (9D abi)[(b' b)B; Bi6l, (5.5

instantons of exponenz=0.75,0.85. The physical field now
changes its sign at the leading edge of the pulse. and
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ing to standard computation rulg¢$8] in path integrals can
be reduced to (1R)[(h;,;—h)%A7]+TréQ;. On the
other hand, exact ways of tracing out quadratic forms like
52S are available only once they are written in terms of the
midpoint field (; ., +h;)/2 rather tharh; (which amounts to
where M is, as in previous sections, the Jacobian matrix ofgoing back at this stage to the Stratonovich prescription
the nonlinear kerneN[b]/(b-b)*2. Again to orderA 7, the substitution of ff;, ;+h;)/2 to h; in
Our task is to perform explicitly the integration over fluc- Eq. (5.9) is harmless except in the cross-product term
tuations &by, . .. ,6by_, at intermediate steps in the path —(1T)(h;.;—h;)- A h; which gets into
integral (5.2). First it will be convenient to get rid of the
anisotropy of the “mass” tensor acting in the kinetic term of
5%S [21] by switching to normalized fluctuating fields de-
fined as

ob; - V8= — 6 - (b; - dp, ) M, b,

——0 (6b;- ab)z[(b b))B;'B;#], (5.6

Mieath ,H—I— h; AT ,
Setting things together, we arrive at the following expres-
sion for the transition probability in the neighborhood of the

(5.7)
. . . . instanton:
In this way the measure in the integral transforms into

= (b;- b)) *?B;h; .

1/(bg- bo)¥2](1/|detBg|) Dh with oh
[1/(bo- b)) “1(1/| ol) P( by by 1) = | det(70)
dN2i=N-1 b
Dh=(m) .Hl dh;. (5.8 % e~ So(m)T g Ta(7) gL { Oy 1- 05— - i}
In performing this change of variables &S, we must pay X ZLhin—hr, 7], (519
attention to the fact thadb;,;— ob;, as well ash;.;—h;,  \where we defined
are potentially of ordeA 7*2. One finds that up t@(A 7°/?)
correctionsnegligible in the continuum limjt 6°S becomes 1 N= Nt
(7)== E TréQi+ — >, TrA—dAr,
AN ha—h hiath 2 2 1=0 2 =0
2 _ .1/2 1+ I ] 1+ o h. 51
89hl= 55 2 1Q ( A TP A,hlﬂ (5.19
and the reduced path integi@lh;,—h¢,7¢] as
“hoVh, (5.9 o
hy=ht
where Zhg—hyril= | " "Dhexp- s (6549
o=h;
1 bi+1'bi+l>1/2 _ } -
=4 == tg. tB7? with
QI 4{ ( bi’bi i+1
2
b .. .b ..\ 12 ) _A_ hiyi—hi hiath
X 1+(ﬁ) B 'Bi. (510 oSh=5r Z 2
I I
hioith  hg+h
Ai,:BrlAiBi ’ (51]) H—]é I : i’ I+]é I1 (518
Vi=(b-by) 'BiViB;, (512  4nd
and Bi = 'Ai’ - (519)

2 , , -
Di:ﬂ-[(b”l' bi.1) Y8\, One easily shows that in the7— 0 limit

(b b )1/ZBN

+ (- 0) Y21 (b4 1- by 1) YBi s 1 — (by - b)) Y2B; ] n——m—m7—
(b bo) By

(5.13

A few simplifications are now in order. On one hand we
expandQ; asQ;=1+ 6Q;+ O(A7?), where

2 Tr 6Q,—Tr| In =dAr,

since the periodicity of the instanton implies that Bgt
=detB,, while
N[b]-b
( b)3/2 dr

However, the ensuing expression fbi( 7¢) is not yet com-
plete to ordeO(I'°). This is because we discarded MEl)

Ito drift term in our computation of extremal trajectories.
The small deviations induced by this term may be neglected

50— bi+1'bi+1)l/2tBi+ltBi1+BilBi+1_

ATE TrA—>f [ab [(b-b)B'BO]—
b;- b; 2

(5.19

is of orderAr. TrackingO(A7) terms in §2S, we may re-
placeQ; by 1 everywhere in Eq5.9), except for the kinetic
term (1/A7)[(hij+1—h;)-Qi(his1—h;)/A7], which accord-
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1 1

in Z,(7¢) and —InZ[h;;—h;,7¢] which are already first- 1 1
" A_7_+§t8i Pi— A—T_EtBi—l Pi—1

order corrections in & expansion but they must be taken
care of in the zeroth order term. Rather thdrsy(z)/T'], it

should reads[b%], where the indeX' denotes a quantity or _1 UitV 10 Uity (5.22
field evaluated in the presence of the Ito term specified in Eq. 27 2 27 -1 2 v '
(2.10. To first order inI', we can take advantage of the
extremum property ob? and write down where
U,1—U;  Ui+U,
Sr[bp]— S[b°]=Sp[bP]— Sr[b°] + S[b°] — §[b°] p=—tt gl P (5.23

AT : 2
~Sr[b%]— [b°]
0 0 can be seen as a matrix momentum. In the absence of con-
:lfff _ N(b"]—Nr[b"] jugate points, ddt); never vanishes except at the origin and
0 (0. p0) 12 one gets the following simple expression for the reduced
path integral, provided thA —0 limit is ultimately taken,

T,

r

where the last identity just comes from the express@#) a2

of the action. Rearranging things under the assumpgat Z[h;,=0—h;=0 Tf]:( 1 ) 1 _

isfied by each of the particular models that we considered " ' 27l) detU(ry)

that the entryB;, of the matrixB involves homogeneous (5.29

monomials of degreé built up only from component&,,

with m#j [one had =0 for model(i) andl=2 for models  Details on this result, which may be found in many textbooks

(i) and (iii ) defined in Sec. I} one finds thafZ;(;) in Eq.  on path integral§20-232, are provided in Appendix B. A

(5.15 should finally be understood as very nice feature of the proof of the connection of the posi-

tiveness of8°S h] with the absence of conjugate points is

~3) [ that it also provides an efficient way for computing the re-
f b°. BB d . duced path integral witth; arbitrary (but still small natu-

4 0 rally). Indeed the main idea consists of addingst® h] a

(5.20  boundary term of the form

1-d 2|
Il(Tf): ( 2 )ATf+ (

This preliminary work being done, the discussion will NE

1
2Q! —
now concentrate on the reduced path integ#lh;, T izo (Ni v 1- Wi ahip o —hi-Wihy),
—hy,7¢]. We first restrict our attention to the case of fixed

endpointsh;, =h;=0. The instantons found in the previous \yherewyis a symmetric matrix at all times and then selecting
sections are physically satisfactory only if the quadratic funcyy,q rightW such that6®S+ 62S' becomes a perfect square.
tional 5§ h] is positive for all{hi} such thahy=hy=0(We | order to achieve this tasklV; must be a solution of a
shall see later on that this is not a sufficient condition in the, atrix Riccati equatior(see again Appendix B for details
present problem According to standard results of functional which, upon the substitution of a new unknown matdy

analysis[19], positiveness o0f8°S[h] is tantamount to the defined implicitly by the relatiorffor 0<i<N-—1)
absence of points conjugate to the origin during the whole

time interval[0,7¢]. Recall that the definition of conjugate
points goes as followsd being the dimension of the space
(here the number of shellsve construcd initial conditions
(h§,h{%) such that

U+1—U; Ui+Ui,
(WU + Wi 1Uj ) = — 53— — B,

At
(5.2
is found to be nothing but the matrix Euler equatiér2?). It

h§d=0,  h{¥=A718,5+0(AT), follows that the result5.24 may be extended to the case of
an arbitrary final configuratioh; as

N -

where g is a shell index running aa between 1 and and

dr
we let them evolve under the Euler-Lagrange equations de- Z[h =0—h;,7]= 1 ? 1
rived from 6°S[h]. The timer;=iA 7 is said to be conjugate n P 2aT) JdetU(ny)

to the origin if the system formed by thiavectorshi(“) gets
degenerate there. One can build a matixsuch thatu# X exp— ih W(r)he, (5.26
=h# , in terms of which the initial conditions read 2r o

la?

whereU(7;) andW( ;) are to be computed by letting both
matrices evolve fromr=0 to 7= 7; according to Eqs(5.22

and (5.25. There are some subtleties about the choice of
while U; ;; (for 1<i<N-1) is obtained fronlJ;_; andU; initial conditions and proper counting of the number of un-
through a matrix Euler-Lagrange equation, derived from Egqknowns whose discussion we prefer to relegate to Appendix
(5.18 and conveniently cast into the following form: B.

Uo=0, U;=A7+0(A7?), (5.21)
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B. A physical definition of s,(2) When summing these two equations, linear termérdis-

We are now in a good position to compute the next to2PPear as expected and we are left after some rearrangements
leading order term s,(z) in the expansion of with the remainder of quadratic order in fluctuations,

—lim,_ . »(1/n)In P,(2) in powers ofl'. We shall obtain an 1 déP db?
estimate forP,(z) by summing over all the trajectories —{So(m)+ P (1) B} == 672 ——(70) - ——(79)
which lead to the same growth of the pulse as the ideal r 2 dr dr
instantonb®( 7) aftern cascade steps. In the smAllimit, all

d
statistically relevant trajectories remain closeb¥{r) and +67d—(rﬂ)-5o, (5.32
we may define unambiguously their “arrival” time at the T
shell of indexn as the first timer, such that where we seb= &b’ — 87(db%dr) (1), so that the time
b(7,)=b%(°=nT)+ &b’ (5.27) delay 67 is simply expressed in terms ofb as 7=
n ’ .
—®y(70) - db.

The end of our theoretical considerations is reached with

where b’ reduces to a linear combination of stable “irrel- . .
the following expression foP,,(2):

evant” modes®;, (9) for i=3. Up to multiplicative factors

growing at most algebraically witm, we can then write “L(D) e (W2Dh-W(Dh
P,(2) as the following integral over the arrival time and the P.(z)~e 0@/ f
position of the endpoint ! Jdetu(9) (2ml)¥2
X 8(®}(p) -h)dh, (5.33

Pn(2)~f P[b%(0)—b°(7p)

where ®;,(7)=(b% b%)¥2'B®, (7) (so that ®}-h=d,

+ b, 7, ] 8@ (7)) 80" )S( By (70)- b )drddb’. - db), W=W-+AW, with W defined in Sec. VA and
(5.28

h-AWh=—2(®),-h) (bO-b°)1/2Z£.Bh

The density of probability in the right-hand side of this ex- T

pression is known from Eqg5.15 and (5.26), where 7; dé® db°

should be taken equal te, and &b; equal to b=b(r,) +(¢él'h)2E'E- (5.34
—b°(7,). Calling 67= Tn—rﬂ the time delay, we get the

following relation betweersb and éb’, valid up toO(457°) We see that the condition of positiveness of the maltfix

corrections: must be supplemented by the condition of positiveness of the
restriction W; of W to the d—1)-dimensional space or-
8= 80" +b%(77) —b°(7y) thogonal to®;, , in order to make the instantons found in the
db° 1 d% preceding section physically meaningful. Provided these two

0
(9. (5.29 requirements are mes$;(z) is obtained as
d2 "

I N 5.2
=ob' - 67 ar (Tn)+257

1
= lim — 41 41
Note thatsr scales typically likeyT in the semiclassical 51(2) nLIToon{Il(nT) zindetl)(nT) +zIn dety(n D)},
limit. We may thus, to leading order, replaeg by 0 and (5.3
identify éb with 50’—6r(db°/dr)(rﬂ) everywhere in the
integrand of the right-hand side of E¢5.28, except in
(1M)[So( ) + €°(7,) - 5b] [the combination appearing in
the exponential prefactor of E¢6.15] which deserves more
care. It follows from the definition of the action thiggain
up to O(87°) correctiond

which is the main result of this section.

Tracing back all the steps leading to Eg.35), one could
object to our starting poin.28 the fact that fluctuations of
the initial endpoint are not taken into account. This could be
done at the expense of rather more cumbersome formulas for
the reduced path integra[h(0)—h(7)] when bothh(0)

(O] 1 480 and h(7) do not vanish. I_—|owever, we beligve on physical

So(7) = So(70) + S — Z 67280(19) - ——(7°), grounds that the exploding associated with the instanton

3 2 2 vodr " washes out any influence of the fluctuations at large scales
(5.30  on the part of the action scaling linearly with the number of
stepsn. Therefore expressiofb.35 should be exact.
and from Eg.(5.29 [together with the conditiorﬂo(rg)

-6b’=0] that C. Practical implementing and results
deP db? The most difficult part of the computation ef(z) lies in
P (7,)- ob= 5T(Tg) o0 — 876 r,)- F(Tn) the evaluation of daét/(7) and deW, () (as defined in Sec.

V B), which requires good control of all the eigenvalues of
4200 these two matrices. Numerical instabilities could be avoided

(Tg)' (5.31) for a time long enough to get a precise estimate of
dr? (d/d7)IndetUW; by using the exact expression of the ma-

1
+ 557'200( rﬂ)-
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FIG. 6. Test for the convergence of several relevant quantities

entering the calculation of the functi® (z). We show the case of
the model(ii) at z=0.8.

FIG. 7. Graph(stars of so(z)/T" +5s,(2) for I'=0.58 and model
(ii). The parabolic fitS;,,q= a(z—z,)? yields z,=0.74 anda
=30.

trix Euler equation(5.22 and the relation5.25 betweenW  ton. wWe found, however, that the matrix momentikHJ
andU. In this problem there are two Goldstone modes assogevelops invariably a negative eigenvalue after some time,
ciated with uniform rescaling and time translation of the in'so that the projection onto the restricted phase space intro-
stanton: as a consequence, the matti% 6°)"?BU(7) [re-  duced in Sec. V B is a necessary step for restoring the sta-
spectively, p°-b% MB~'WB~1] is expected to have two tistical stability of the instanton. Further, even before this
eigenvalues scaling like (respectively, like 1) (in order to  instability occurs, there was found to be a residtfalerm in
obtain the simplest transcription of these symmetries, oné detWU which forbids any reliable estimate fef(z) to be

has to go back to the original fluctuation fieldb=(b®  deduced from Eq(5.36). The picture at the bottom of Fig. 6
-b%)¥2Bh and the change of variable influences eigenvalueshows by contrast that the more precise quantity

of U andW). When restricting/V’ to the (d—1)-dimensional ~detU detW, quickly settles to a perfect exponential growth,
space orthogonal t®},[ = (b°- b%)Y2Bd,,], one loses one of ©Once algebraic transients have been factored out. Note that

the eigenvalues scaling like 4/so that there remains an the positiveness of both andW; could be checked in any
algebraic factor/ in the productydetU(7) yW,(7), which ~ 'nstance. , _
we had to take away by hand in order to make more con-. In all the mode_ls that we mvestlg_ated, we found that t_he
spicuous the leading exponential growth of this quantity. ToI'St-Order correctiors, () to the action takes an approxi-
give an idea of the accuracy of our procedure and confirninate parabolic shape of positive or negative concavity, cen-
the soundness of the intricate formu.39 that was pro- tered around a value of different fromz,. In the case of
posed fors,(z), we show in Fig. 6 the behavior of various MOdel(ii), the concavity o6,(z) is opposite the one &}(2)
relevant quantities in the case of modi), and for a mod- @nd the maximum 0$,(z) is reached at a scaling exponent
erate scaling exponert= 0.8. It is observed in the picture on 21~ 0.6, significantly lower tharz,=0.72. This means that
the top that the logarithmic derivatives of détand deyv  the minimum of the total action densitg(z) =so(2)/I"
exhibit a linear behavior with almost opposite slopes. It can™ $1(2) [for values ofl” such thas(z) remains concave as it
be shown by considering simpler and exactly solvable mogshould is displaced toward the side of larger exponents, just
els for quadratic fluctuations without intershell couplings that2S & result of fluctuations. The trend is just the opposite for
this strange effect mostly reflects the stiff variations sufferedn® modeliii), wheres, (z) presents this time the same con-
by the noise variance on any shell, as the latter moves backaVity 8sso(z) and a minimum on the left side @. Figure
from the leading edge of the instanton to its rear end. Thd Shows the graph o8,(2)/I'+s,(z) that is obtained for
argument is presented in Appendix C, since it may help thénodel(ii) and for the valud™=0.58, which we believe to be
reader to get a feeling for the order of magnitudes at play irPf Some relevance for the GOY modeke Sec. VL
both U andW matrices.

It could be tempting at this level to approximatgz) as VI. COMPARISON WITH NUMERICAL DATA ON THE

STATISTICS OF COHERENT EVENTS IN THE

. d GOY MODEL
lim E-{Iﬁ 3In detw U},

T—®

(5.3
The systems we have analyzed here were introduced to
describe inertial singular structures of the GOY model. To
This expression would come out if, without great physicalcheck their physical relevance, we first have to define a class
justification, it were decided to sum over all positions of theof events observed in full simulations of the GOY model that
final endpoint in the path-integral formulation in order to is likely to be the best candidate for a description in terms of
estimate the volume of the basin of attraction of the instaninstantons. It is clear that relative maxima of the instanta-
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FIG. 8. Histograms of the energy flux in the log-log plot, in- i
volving all relative maxima ofe,, or only those associated with -0.4 5 1‘0 1‘5 2'0 ’ o5

coherent events. The shell index=11, the Reynolds number

Re is 18, and the number of TOTLS is»610". shell index n

FIG. 9. The two quantitie®, and—22ﬁ (encoding the Gauss-
ian central part of the histogram of the growth variahle-A,, ) vs

neous energy flux e (t) [with e,=k,’Re{(1 <9 ' vaflab
_ 2y b b.4+b._ .b...b.)l are useful observables ™ The Reynolds number Re is 1@nd the dissipative shell has
€)Q"Dn —2bn 100Dy 1Dp 100} ] index ny=23. The two pieces of straight line show the linear fits

for tracking the passage of coherent structures across i) ; .
whole inertial range. But their total number is found to growt at were used to extract the valueszyfanda in the previscous
with n ask??, due to the acceleration of time scales typical ange.
of the Kolmogorov energy cascade. One may consider th
they develop on treelike patterns in the,t) plane, which
are renewed at each turnover of the large scal&3TLS).
We say that such trees provide a realization of the propag
tion of a coherent event from shel} to shelln>ng, when-
ever then—ny nodes of the tree closest in time to their

) —A, , as well as the domain of initial amplitudés used to
supposedly common ancestor on the shell of lower inggx "o o 0
appear in the order of increasing shell index. In order tgeonstruct this histogram. It appears that the two graphs are

discard too weak, and therefore irrelevant, events, we imrather far from simple straight lines : this is especially true

posed thateno be greater than half the mean energy qux.for the variance, whose graph from concave gets convex be-

Fi 8 sh the | ithm of the hist f the | yond the shell index 15. From the investigation of lower
lgure © shows he fogaritiin of the histogram of th€ 109apayngigs numbers Rel(® and 16 we could deduce that
rithmic amplitudesA,=In|e,[*° for all relative maxima on

hand and for th wicted cl f coh ¢ i dthis transition occurs at a shell index always of the order
one hand and for the restricted class of coherent events Gt ny— 8 and defines a clear cut boundary between the iner-
fined above on the other hand, with=5 (far enough from

. = . S tial range and a surprisingly wide previscous range. We be-
the forcing rang)eandn—ll(_vvell m_the inertial rang)a_The lieve that the direct action of viscosity on intense bursts
Reynolds number of the simulation Re=10%. Statistics

starts to show up only at the shell index— 3, beyond
have been run over$10* TOTLS, and on average there are _ ..
three “coherent lines” for two TOTLS. We note that the which the local slope of th®, graph ceases to vary and

tatisti f coh ¢ S | o | | f Ipoints to a value of the average growth exponent of coherent
|Sa|fg(51()) coherent events IS very close 1o log-normal 10y ctyres precisely equal . The fact thatn. lies rather
€nl= .

. far from ny means that the cut off imposed by viscosity

The effective gxponenzt of a .coherent bu_rst aftar—ng exerts a long-range influence on the statistics of the random
cascade steps is obtained via the reIatAm:AnO+(n environment seen by a coherent structure. A decent linear
—Np)(z—2/3)In 2. If anomalous scaling is preserved in theregime for both the drift and the variance is observed in the
Re—c limit, the pdf of scaling exponentsshould behave at  range 15<n<21, from which we get the two estimates
large cascade lengths &s,(z)~e "*?, where generically —29+4 andz,=0.74+3x 10 3. Assuming that the fitting
s(z) will present a quadratic minimum at sorag, with an  range 18<n<16 provides the best clue to the asymptotic
expansion aroundz, that we write ass(z)=a(z-z)?  scaling of the inertial range, one gets the second set of values
+---. The histogram of the variabl@n—Ano should conse- a=45+6 andz,=0.75+3x10 °. It appears that the phys-
quently evolve, asn—n, increases, towards a Gaussianics of the previscous range is quite well reproduced within
shape, whose centBx,, and Variancé,ﬁ grow linearly withn our modeling(ii) of the incoherent background. By choosing
and relate t@, anda as I'=0.58 (a value hopefully small enough to fall within the
range of validity of semiclassical approximatipnene ob-
tains, as Fig. 7 shows, an almost perfect parabolic shape of
S(2)=—[Sy(2)/T +S4(2)], with a maximum reached &,
=0.74 and a curvatura= —2s"(z,) = 29. However, the pa-

8 he actual behaviors @, and— 232, obtained from a very
high Reynolds number simulation (R&0°, which sets the
dissipative scale at the shell indey= 2In,Re=23) are plot-
Fed in Fig. 9. Error bars were estimated by varying the range
of the quaderatic fit to the logarithm of the histogram Ayf

D,~nIn2(z,—2/3), 32~ ;—a(m 2)2. (6.1
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rameterl” cannot be adjusted so as to account for the highewe plug now the Ansatz equatid\l) in the equation of
values ofa andz, characterizing the inertial range. It would motion (2.11) and project it onto the two direction®;,
seem that in this range of scales it gets necessary to assurseh® and®,,=db®/ dr. We get by doing so

some bias in the incoherent fluctuations boosting the increase

of the renormalized value of, while keeping the noise dr dx
width small. ar g Pu-BS (A3)
VIl. CONCLUSION dr
d—7_—1=<1)2|‘B§. (A4)

We have developed a general scheme for computing nu-

merically self-similar instantons in scale-invariant stochastics v« other dimensions of the configuration space are ne-
dynamical systems. As concerns the physics of the GOY,

model, we believe that the bunch of results presented he%eded’ Eqs(A3) and (A4) form a closed two-dimensional

. - System, which may be rewritten as
gives strong support to the relevance of an approach focusin

from the outset on structures in order to understand intermit- dx

tency and treating the rest of the flow as a noise of weak —={, (A5)
amplitude. In particular the trend toward log-normal statis- dr

tics of coherent structures is nicely recovered. The detailed

study of various stochastic extensions of the GOY model dr

shows that the resulting pdf of scaling exponents of singular 1- d_? = {2, (A6)
structures is very sensitive to the hypothesis made on the

coupling of noise to the velocity gradient fields. where correlation functions af; and ¢, read

We hope that our approach will be useful for attacking the
3D Navier-Stokes dynamics along similar lines, once an ad- o dr o
equate decomposition of the flow into coherent and incoher-  (&i(7)¢j(7")=—=V;;j8(7—1"), 1si,j=2, (A7)
ent parts will have been introduced. An application of the dr
method to Kraichnan’s model of passive scalar advection i
formulated on a lattice of shells has already been attempted
[22,23. It has given encouraging results with regard to the Vij=®; -B'BD; . (A8)
validity of a semiclassical analysis, even in situations where
a small parametg(ike I" in the present problejris missing.  The Gaussian action density associated with one cascade step
within this restricted stochastic system is given by

We thank L. Biferale, G. Falkovich, V. Hakim, V. Leb- 2
edev, P. Muratore, D. Vandembroucq, and R. Zeitak for use-
ful discussions or suggestions at various stages of this workonce expressed in terms of the diffusing variabd(a%) and
J.-L. G. has been partly supported by the CNRS/CRTBT and,(;), it becomes
by grants from the Israeli Science Foundation and the Min-
erva FoundatiofGermany. 1 J

To | [dr ot . .
=5 dT{(T) [X2(V ™Y 1+ 2X(V ) 10+ (V)]
0 dr
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APPENDIX A

We carry out in this appendix the adiabatic approximation +d_~7'(vfl)22_[)'((\/*l)12+ (V™15
alluded to in Sec. IV B. We look for self-similar instantons T
within the restricted manifold of configurations of the type

. (A10)

The extremization of with respect tad7/d 7 leads to
b(7)=eX"b0(7), (A1)
T . .
—=={0(V D10+ 2X(V 10 (V1) Vot 4
whereb®(7) is the deterministic solution of scaling exponent T (ALD)
Zo,7 can be thought of as a “proper” time referring to the

actual position of the pulse. The two variablés) andx(7) ~ and to an effective action for the remaining variakle
parametrize then local changes of speed and amplitudes of .

the pulse, which keeps the same shape as in the absence of [X(;)]:f Od';_({[)'(2(v—1) +2X(V ) 1+ (V1) 5]
noise. Note that if Eq(Al) is to represent a self-similar eff 0 H 12 z

instanton of scaling exponent- z,,x(7) must obey the con- B . B
straint ’ XV 2= [X(V ) 1+ (V1)) (AL2)

5 5 Assuming the coefficient¥/y;, Vi,, andVy, to be almost
X(7+To)—X(1)=(z2—25)InQ. (A2) constant inside the time interval, one deduces an analytic



PRE 62 INSTANTON CALCULUS IN SHELL MODELS OF TURBULENCE 3607
expression foisy(z) from Eeff by just replacing in the inte- VBB Wi 1—W, - W, +W, 4
gralx by (z— z,)In Q/T, [which follows from Eq.(A2)]. One P 2 ‘ 2
gets in particular for large enough- z,
° 5= &5
S0(2)~ (2= 2o)N Q{[(V H (V™ H 2= (V™ 13}, ! ! 2 '

(A13)

i.e, a linear behavior as observed for the true solution ofye note that Eq(B5) forcesW, to remain symmetric for all
model (i). time, provided thatV, (arbitrary at this stageis chosen to
be such. In order to solve the above Ricatti matrix equation,

APPENDIX B one makes the following change of matrix variable:

We derive the formal expression of the reduced path in-
tegralZ[ 0—h;, 7¢] given in Eq.(5.26 of Sec. V of the text.
The proof is presented in many textbooks on path integrals
but, as far as we know, always using a continuous definition
of time. This leaves some ambiguity in the right equations
that matricedJ andW should obey, once time is discretized
for computing purposes. We found that this issue is crucia ) ’ )
mostly for evaluatingV and preserving its symmetry prop- (B6) is equwale_nt to Eq(5.29 quoted in the text. Further-
erties. This is why we feel it useful to show how every stepMere, by multiplying both sides of Eq(BS) by (U;
of the proof given in the continuum limit receives an exact T Ui+1)/2 on the right, one gets for9i<N—1
transcription in the discrete time case.

We start from the quadratic functional

_= Uil
'OAT

Wi+Wi+1)(

Ui+Ui
2

B+ 5

(B6)

From the expressio(B3) of Q,, it is easily shown that Eq.

WipUipa—Wily Ui — Ui
e =27 s ([P bt A7 ' Ar
2I' =0 AT : 2 Ui+Ujs,
+('BB+V)——5—. (B7)
hiti+hi  hipat+h 2

By half-summing the two relations yielded by E@7) at
subsequent values-1 andi of the temporal indexwith
then 1<i<N-1), and using Eq(5.25 after noticing that

Upon the addition of the boundary term
—(U2D) S 1 Wi ihis i —hy- Wi,

it becomes without any approximation
WiaUir 1= Wi_qUiy

52~S[h]:£| % 1 ({Q;/Z[hiJrl_hi & 2AT
2T i=0 : At : . . U.)— ‘U. A ’
_(W|+1U|+1+W|U|) (W|U|+W|—1U|—1)
X(B-_Wi+wi+1)hi+l+hi 2 2AT ’
! 2 2
hisi+h ~ hii+h one can eliminat&V and check that) obeys the matrix Euler
V) (B2)  equation(5.22), as promised in the text.
So far, we have proven that, as long as the mairimay
where be inverted, the positiveness 6fS is guaranteed, since in
that case the matriY exists at all time$from Eq.(B6)] and
~ At allows one to transform the initial quadratic form into the
Qi=1= = (Wis1—Wy) (B3)  time integral of a single square. We show now how these
matrices lead to a compact expressiorZphy=0—h;,7¢].
and We first note that Eq9B6) and (B7) provide 2N relations
for 2(N+1) unknowns{Ug, ... ,Up} {Wg, ... Wy}. This
% vyt v~ Wi [, Wi+W,, gives much freedom in the choice ®, and U,. In the
Vi=Vi+ 65— 2 —| Bi- 2 particular case ohy,=0, it is convenient to set,=0 and
WoUp=1 (which should be understood as the limit as
x@l( 5o W|+Wi+l) (B4) —0" of Ug=€ andW,= €1, so thatW, is indeed symmet-
: ' 2 ric). A quick inspection of Eq9B6) and(B7) reveals thatJ;

and W, behave then respectively @adr and (A7) ! to

We see tha?3 h] reduces to the time integral of a single
(positive square, if and only i, is such that for all 6<i
<N-1

leading order inA 7 for 1<i<N. One has, for instance, the
exact resultW,= (A7)~ 1—(By+'By)/2+ (‘BoBy+V}). Re-
call that the quantity we wish to estimate reads now
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Z[0—hy, ] =@ (M2 Wity
N-1

(12 I+ '~i I+
Xf’phgd(hN_hf)e ( );}«# Qi

(B8)
where we defined the new fielgt . ; (for 0O<i<N-1) as

Wi+W, 4

hi+hisq
BI+ 2 I 1+

>
(B9)

Wi1=hi 1 —h—AQ

and the measure of integratidph as

N—-1 dh
ph=[] —— . B10
i:Ho (27T A7)9? (B10

With the help of Eq.(B6), the transformatior{B9) may be
rewritten as

Uit1— U

Ui+Ujiq|
‘/’i+1:hi+1_hi_( 2 : =

1
5 ) (hi+hiq).
(B11)

This relation is easily inverted by setting=U;{ , which
gives

Ui+Uiyp Ui U,
2 2
X(§i+1_§i)

Ui+Ui+1)_1Ui+1_Ui}
2

i+1=

Ui+Upq| 7
:Ui+1<T> Ui(&+1— &)

Uy t+Uuih)
== Ga-0,

so that we deducéunder the assumptiohy=0), for 0<i

=N-1,
L(uittut
|+1 |+1{E (—)'»bj-#l-

(B12)

Sinceh; ;. , is linearly related to thel; . ; s of |ndex1 lower
thani, only the diagonal bIocktsl,H[(U +U,+1)/2] enter
the Jacobian of the transformation and one has

N-1
5'hi+1|: detfU;+Uj,q)
é"/’j+1’ i=0 det2U;

JN= (B13)

To enforce the boundary conditiomy=h; at time ¢ in
terms of the new variableg; , we introduce the usual inte-
gral representation of thé function:

N—1
5d(hf—hN)=f dade*iw{hf*UN 20 (U U2l )
(2m) =

(B14)

After performing the Gaussian integration over #és, one
arrives at

de(U,+U;,,) 1

Z[0—h;,7(]= HO[ JeU. 5
I e i

@~ (/2D)hg- Wyyhy

f da e-iahig—(AT2)a Ga

(2m)?
(B15)
where
N—-1 -1 -1 tyy—1, t -1
G—U,\,{i_O (—2 )Qi (—2 Uy
(B16)

This awkward nonlocal operat@ is greatly simplified when
the singular initial condition already mentionddg= €, W,

=e L with e—0", is adopted. In that cas6& is completely
dominated by the first term of the series in the right-hand
side of Eq.(B16) which diverges as~! and, to leading
order ine, one has

1 AP
G~A—TUN(u01W0 MughHiuy. (B17)

The summation ovew can then be done and, sin@&?!
vanishes in the—0" limit, one gets

1 )d’zde(U0+U1)

Z[Oﬁhf'”]:(zwrm detUy,

H de(U;+U;,,) 1
=1 detZUi \/dEQi
« @ (V2D)he-Wyhy (B18)

Note that all the manipulations presented in this appendix
were devoid of any approximation. It is finally a straightfor-
ward matter(details will be skipped hejgto check that in
the A7— 0 limit, the infinite product in front of the exponen-
tial in Eq. (B18) reduces to (1/2T'A7)%%(1/\/detUy),
thereby making Eq.B18) identical to the result(5.26
quoted in the text.

APPENDIX C

We consider the following quadratic action:

Shal=5 3 f —_ (&

where, in order to mimic the stochastic models studied in this
paper, the varianca,(7) evolves on each shell as

an(7)=(b%b%(C%_,C0 ,)?, (C2)

i.e., as the variance of noiséy%- b%)B,,,, for model(ii). In
Eq. (C2), b°(7) may be thought of as the deterministic self-
similar solution, anda,(7) can therefore be cast into the
form
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aq(7)=e*7a(1—nTy), (C3) _ Vay(7)

(C9
where the functiora(r) satisfies

a(r+dTy)=a(7) (CH 7)d7.  (Cl0

1 1 T
O~ 5 o™

N i - its leadi q d As long asr<7,=nT,, the instanton has not passed through
=0 at time7=0. At its leading edger(>0),C, decreases g gne|| of indexn and the integral in the right-hand side of

very abruptly as exptcr"), with r=(y5—1)/2 andc a con- Eq. (C10 is dominated by the neighborhood of the lower
stant of order 1. This essential singularity comes from thg,q,nd-=0. We deduce that for indicas> 7T,

necessity of balancinglC,/dr with the dominant term

Q%(1-€)C,_,C,_; of the nonlinear kernel of the GOY ehor
model in this range of scales. In the trail of the instanton Unn(1) =5,
(n<0), one has a much smoother behaviof~ Q"% 2A0
=e"To, When the shell lattice is periodized, the leading on
edge and the tail of the instanton have to be glued together Win(7)=2A0e" 0. (C12

and the locus of matching, as well as the residual amplitude )

of C, at that place, will be imposed by the side supportingBy contrast, whenr gets larger tharr, (by some units of
the slowest variations of,,. We conclude that in a cyclic time To), the integral on the right hand-side of HE10) is

chain containingd shells, most of them reside in the expo- dominated by the neighborhood of the timg where a,

nential tail of the instanton, so that we may writegain  takes its maximal value. We get

under the hypothesis of an instanton initially centered around

because of the periodicity of the shell lattice. Let us assume
that the instanton is centered around the shell of index

(C1D)

the originn=0 and with a shell index defined between 0 an(Tn) A -
Yn(7)~ 1\ et ),
andd—1) an(0)
a,(0)~e*("=dDAoTo, (C5)
ou(7)~ \| 20 s
Thus, the range of values spanned by the funcéida very " an(0) '

large and scales with the total number of shells BR&0To,

For shells on the exponentia| ran‘m_'(fr) first decreases ex- wherel is a number of order 1. It follows that for indices
ponentially in time likee 240" (becauseC, decreases like N<7/Ty,

e~ "7 in this region and goes by a sharp maximum of order

e?"%oTo at the timer,~nT, when the center of the instanton Upn(7) ~ 12007 MAoToghor, (C13
reaches the corresponding shell. Then it starts again to de-
crease exponentially. W, (7)~ 1 e?"0Tog™2A07, (C19

Having understood these basic dynamical features, we can
compute the matricesl and W introduced in Sec. V A for  here we used the estimat€5) for a,(0). SinceW, U,
the quadratic action given by E(C1). To make contact with  —e~%07 for n>7/T, and ~e?¥Toe =407 for n< 7/T,, we
the normalized fielch used in the real problem, we switch conclude that datvU increases exponentially likef“o™, But
from the variablex, to the variabley,=X,/+/a,. This trans-  this property is not shared by détor detw considered in-

forms the original action into dividually. Indeed, since the number of shells crossed by the
41 ) ) instanton increases linearly in time, Eq€11) and (C13
1 0 . la show that
Styil=5 3 | ar| g+ 5—”yn) . (9
n=0J0 an | 7Ty
3AgdTa—Ag(72/T,
Since there is no intershell coupling, the matritesind W detU~(2—Ao) eode” Aol To), (C15

are diagonal in the shell index. The extremizationSpy,,]
with respect toy, leads to the couple of first-order differen- \hjle from Egs.(C12) and(C14),
tial equations

[ —7Ty

. 1la detW~| — e~ 2AodTg+tAg(7/To) (C16)
Pn=Ynt 5 a_nyn ) (C7 2A0
n
. This argument captures apparently a good part of the physics
. _} an cs of fluctuations around a moving self-similar system, though
Pn= 2 a, Pn - (Cy badly treating hybridization effects between neighboring

shells. It also explains how largemal) numbers are gener-
One has simpWJ,,=y, andW,,U,,=p,. The solution of ated in the spectrum of the matiix(W) and why in practice
Egs.(C7) and(C8) under the initial conditiong,(0)=0 and  one does not have much freedom in the choice of the total
pn(0)=1is number of shellsl.
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